
Comparison of MFCC and Cepstral Coefficients as
a Feature Set for PCG Biometric Systems

Justin Leo Cheang Loong, Khazaimatol S Subari, Muhammad Kamil Abdullah, Nurul Nadia Ahmad and Rosli
Besar

Abstract—Heart sound is an acoustic signal and many techniques
used nowadays for human recognition tasks borrow speech recogni-
tion techniques. One popular choice for feature extraction of accoustic
signals is the Mel Frequency Cepstral Coefficients (MFCC) which
maps the signal onto a non-linear Mel-Scale that mimics the human
hearing. However the Mel-Scale is almost linear in the frequency
region of heart sounds and thus should produce similar results with
the standard cepstral coefficients (CC). In this paper, MFCC is
investigated to see if it produces superior results for PCG based
human identification system compared to CC. Results show that the
MFCC system is still superior to CC despite linear filter-banks in
the lower frequency range, giving up to 95% correct recognition rate
for MFCC and 90% for CC. Further experiments show that the high
recognition rate is due to the implementation of filter-banks and not
from Mel-Scaling.

Keywords—Biometric, Phonocardiogram, Cepstral Coefficients,
Mel Frequency

I. INTRODUCTION

AHUMAN identification system is a system that is able
to recognize an individual when certain data which is

specific to the individual is presented to it. In the past, such
systems were based on handwriting, speech, fingerprints and
facial features to perform its tasks. However too much reliance
cannot be placed onto these biometrics as they can be forged
by others. As such researchers have looked deeper into the
human body to search for alternatives which cannot be easily
falsified.

The human heart sound has been traditionally used as a
means of identifying diseases through its analysis. Phonocar-
diogram (PCG) is the digitally recorded heart sound. Recently
PCG has been explored to see if it carries information specific
to individuals. Studies have shown that heart sound possesses
the capability of being a biometric [1], [2], [9].

The heart sound is categorised by the two loudest sounds
referred to as S1 and S2. S1 typically lasts for a duration of
150 ms with a frequency between 25 to 45 Hz and S2 lasts for
120 ms bearing a frequency of about 50 Hz. S1 is produced
through the sudden closure of the mitral and tricuspid valves
during isovolumetric contraction to pump blood into the aorta
and pulmonary artery. The sound of S1 is akin to a low and
slightly prolonged “lub”. S2, which is a short, high-pitched
“dup”, is then caused by closure of the aortic and pulmonary
valves during isovolumetric relaxation when the ventricles end
ejection and starts the diastole. Together they make up the
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Fig. 1. Example of a PCG waveform where S1 and S2 are clearly visible.

Fig. 2. Spectrum of a PCG signal. The frequency range of the signal is
concentrated in the low frequency region.

“lup-dup” sound that is often thought of when referring to a
heart beat. An example of a PCG signal containing S1 and S2
is shown in Figure 1.

The idea of using Mel Frequency Cepstral Coefficients
(MFCC) as the feature set for a PCG biometric system comes
from the success of MFCC for speaker identification [5] and
because PCG and speech are both accoustic signals. MFCC
differentiates itself from the standard cepstral coefficients
(referred to as CC from here on) as it maps the spectrum
of the signal onto the Mel-Scale which replicates the human
hearing perception. However, in the low frequency range of
up to 1000 Hz, the Mel-Scale is linear , therefore heuristically
MFCC should be identical to CC. This is shown in Figure
2 where the energy of the spectrum is concentrated in the
low frequency range. MFCC is researched to see if it allows
for improved system performance compared to CC for PCG
signals identification using a Gaussian Mixture Model (GMM)
classification algorithm.

II. CEPSTRAL COEFFICIENTS AND MEL FREQUENCY
CEPSTRAL COEFFICIENTS

The cepstrum is defined as the inverse Fourier transform
of the log-magnitude Fourier spectrum. It is used to separate
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Fig. 3. The Mel scale versus the Hertz scale.

the transfer function and the excitation signal which exists
in the low quefrency and high quefrency respectively. The
coefficients that make up the resulting cepstrum are known as
the cepstral coefficients. In the past, CC has only been used
for identifying echoes that are present in an accoustic signal
[3] but later on CC have been shown to be a feasable set of
features for speaker identification [7], [8] and even musical
instrument identification [4].

Stevens et al. (1937) proposed the Mel scale which is a scale
of pitches judged to be equal in distance from one another
according to human perception [11]. According to the scale,
larger and larger intervals of frequency are judged by listeners
to produce equal pitch increments. For example the perceptual
interval between 100 Hz to 200 Hz is approximately the same
as the perceptual interval between 10 kHz to 20 kHz. Figure 3
shows that as you go up the Hertz scale, the same interval on
the Mel scale will require increasingly larger Hertz intervals.

Mel-frequency cepstrum is actually a cepstrum with its
spectrum mapped onto the Mel-Scale before the log and
inverse fourier transform is taken. As such, the scaling in Mel-
frequency cepstrum mimics the human perception of distance
in frequency and its coefficients are known as the MFCC.
MFCCs are now widely used for speaker recognition tasks
[5] and has been shown to yield excellent results [6], [10]. In
[6], it is also shown that MFCC outperforms normal cepstral
coefficients for speaker identification.

A similar study by Phua et al. (2008) has shown successful
implementation of MFCC of PCG sound as a biometric.
However no comparison has been done to determine if there is
an increase in performance when using MFCC against normal
cepstral coefficients as in speaker recognition.

III. METHODOLOGY

This experiment consists of four distinct parts: i) experi-
mental setup, ii) preprocessing, iii) feature extraction and iv)
classification. Each part will be explained in detail in the
following subsections.

A. Experimental Setup

For the purpose of this experiment, a database of PCG
recordings were created. The signals were recorded using
a Dong Jin Medical i-Scope 200 digital stethoscope with
a sampling frequency of 11025 Hz at 16-bits per sample.
The stethoscope was connected to a computer and the PCG
was captured using the Matlab Data Aqcuisition Toolbox.
Participants were required to sit on a reclining chair and
remain calm and relaxed throughout the whole procedure. The
stethoscope was placed on the pulmonary auscultation site on
the participants’ chest.

There were a total of 6 participants and they were required
to attend 6 separate recording sessions. Each session consisted
of 10 trials with each trial lasting for approximately 60
seconds. The sessions were spaced at least one day apart from
each other. Thus there was a total of 60 PCG recordings
for each participant. The first and last 5 second of each
recordings were discarded therefore 50 seconds of the signal
was obtained from each trial. The signals were randomly
divided into training and testing sets each time the system is
executed whereby 50% of the signals were used for training
and 50% for testing.

B. Preprocessing

Preliminary processing is done in order to prepare the signal
for the feature extraction stage. The signal may be affected by
the noise caused by internal organs, body or hand movements
and also bursty interferences. The following steps were done
during preprocessing:

1) Low-pass filter: An elliptic low-pass filter with a cut-off
frequency of 300 Hz is used to remove unwanted high
frequency noise.

2) Spike removal: Values that are higher than a certain
threshold are set to the threshold value to minimize the
effects of bursty interference.

3) Amplitude normalization: All the signals are normalized
to a range between -1 and +1 using the following
equation:

xn[n] =
xi[n]− μx
max(|x|) (1)

where xi[n] is the input signal, μx is the signal mean,
max(x) is the maximum amplitude of the signal and
xn[n] is the normalized signal.

C. Feature Extraction

For feature extraction, the signal will be put through the
CC and MFCC method so that the performance of the system
using these two feature sets can be compared.
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Fig. 4. Cepstral coefficient feature extraction process.

1) Cepstral Coefficients: The process of extracting the
cepstral coefficients are shown in Figure 4. First the signal
is divided into frames of 512 ms and each frame is multiplied
with a Hamming window. Then the signal is converted from
the time domain into the frequency domain by using the
discrete Fourier transform (DFT).

As the PCG signal has a very small bandwidth in the
lower frequency regions, only the spectrum ranging from 0 Hz
to 100 Hz is utilized to maximize the information contained
within the cepstral coefficients for better seperability and also
to cut back on computational costs.

Following this, the natural log of the magnitude of the
spectrum is computed and finally, the inverse discrete Fourier
transform (IDFT) is computed. Only the first few cepstral
coefficients are selected as the higher order coefficients repre-
sents the excitation process which is less useful [9]. A normal
cepstrum operates on a linear frequency scale while Mel-
frequency cepstrum operates on the Mel-Scale which will be
discussed in the following section.

In general, the equation for determining the cepstrum of a
signal can be written as follows:

c[n] = IDFT(log(|DFT(x[n].w[n])|)) (2)

where x[n] is the signal, w[n] is the window function, n is
the frequency index and c[n] is the computed cepstrum. The
first 50 coefficients are used for this experiment.

2) Mel Frequency Cepstral Coefficients: The main differ-
ence between computation of the MFCC and the cepstral
coefficients is the inclusion of Mel-Scale filter-banks, as shown
in Figure 5. The Mel-Scale filter-banks are computed as
follows:

m = 1127 loge

(
f

700
+ 1

)
(3)

where f is the frequency in the linear scale and m is
the resulting frequency in Mel-Scale. The frequency scale
ranging from 0 Hz to 100 Hz is converted to the Mel-Scale
and 51 centre frequencies are then spaced linearly throughout
the range in Mel-Scale. These centre frequencies are then
converted back to the normal linear scale using the inverse
of Equation (3) and they will now be spaced logarithmically.
Triangular overlapping filter-banks are then constructed based
on these centre frequencies.

The power spectral density (PSD) of the spectrum is mapped
onto the Mel-Scale by multipying it with the filter-banks
constructed earlier and the log of the energy output of each
filter is calculated as follows:

Fig. 5. MFCC feature extraction process.

S[m] = log

(
N−1∑
k=0

|X[k]|2Hm[k]

)
(4)

where Hm[k] is the filter-banks and m is the number of the
filter-bank. Finally, the discrete cosine transform (DCT) of the
spectrum to obtain the MFCC is computed:

c[n] =
M−1∑
m=0

S[m] cos

(
πn

M

(
m− 1

2

))
, n = 0, 1, 2, . . . ,M

(5)
where M is the total number of filter banks. The first

coefficient is discarded, and the remaining is used for testing
and training.

D. Classification
The classification method used for this comparison is the

GMM. It is actually a probabilistic model with a normal
(Gaussian) distribution. Every class will have its own GMM.
During the testing phase, the signal is compared to the avail-
able GMMs and classification is made according to the GMM
which gives the maximum likelihood estimation. Studies have
shown that GMM not only make an excellent classifier for
speech recognition [10] but also for PCG signal recognition
as well [9]. It has also been shown that GMM outperforms
Vector Quantization (VQ) for PCG biometric systems [9] and
thus GMM is selected as the classifier in this biometric system.

For a D-dimensional feature vector denoted as x, the GMM
of a person’s heart sound is given by the weighted sum of M
component densities:

p(x|λ) =
M∑
i=1

pibi(x) (6)

Each component density, bi(x) is a uni-modal Gaussian
density function given by:

bi(x) =
1√

(2π)D
√|∑i |

e

(
− 1

2 (x−μi)
T
∑−1

i
(x−μi)

)
(7)

where μi is the mean vector,
∑
i is the covariance matrix

and the mixture weight satisfies the constraint
∑m
i−1 p

s
i = 1.

Therefore the GMM of a person’s heart sound feature vector is
denoted as λ = {pi, μi,

∑
i}, i = 1, . . . ,M . The Expectation-

Maximization (EM) algorithm is used for estimating the
maximum likelihood model parameters.

For recognition tasks, the cepstral coefficients and the
MFCCs will be put through the different GMMs and classified
according to the maximum likelihood.
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Fig. 6. CRR of the system using different number of cepstral coefficients
and MFCCs. The number of GMM components was set to 13.

IV. RESULTS AND DISCUSSION

The results of this experiment will be based on the correct
recognition rate (CRR):

CRR =
Cn
Tn
× 100 (8)

where Cn is the number of correct classifications and Tn is
the total number of testing samples. Since the samples used
for training and testing for every run are randomized, the CRR
for every test is taken as an average of 10 runs.

Preliminary experiments were conducted in order to find the
i) optimum number of coefficients and ii) the optimum number
of mixture components needed for high classification rates.
In the first experiment, the number of mixture components,
M, was set to 13 and the number of cepstral coefficients and
MFCCs were varied. Figure 6 shows that the performance of
both systems remain relatively stagnant from 20 coefficients
onwards. It is interesting to note is that despite the fact that
the MFCC is mostly linear below 100 Hz, it shows a constant
performance gain over the cepstral coefficient counterpart.

In the second experiment, the amount of mixture compo-
nents used to model the GMM classifier was varied. It was
observed in Figure 7 that as the number of mixture com-
ponents increase, both systems show improved performance.
Nonetheless the results follow the trend from the previous
experiment whereby the MFCCs show better performance gain
over cepstral coefficients.

These results are rather surprising, considering that Mel-
Scale is almost linear within the bandwdth where heart sound
resides and therefore the results should not differ much from
that of the cepstral coefficients. Another test is done where ex-
pand the bandwidth for obtaining the coefficients is expanded
to the full frequency range of up to 5512.5 Hz. Additionally
another system is created for extraction of cepstral coefficients
using filter-banks that are separated linearly henceforth re-
ferred to as linear filter cepstral coefficients (LFCC).

Table I shows that there is almost no difference in the
CRR between the cepstral coefficient system and the LFCC

Fig. 7. CRR of the system using cepstral coefficients and MFCC for different
values of GMM components. The number of coefficients was set to 50.

TABLE I
CRR USING FULL BANDWIDTH OF SIGNAL (0 HZ TO 5512.5 HZ).

Type of coefficients CRR (%)

Cepstral Coefficients 61.67
LFCC 58.93
MFCC 74.53

system when the full frequency range is used. However a large
increase in CRR of about 10% can be seen when using the
MFCC. This can be attributed to the property of the Mel-
Scaled filter-banks having denser filter-banks in the lower
frequency regions, thus extracting more useful information
compared with the previous systems. As can be seen in Figure
8, LFCC only has 2 filter-banks below 100 Hz while MFCC
has 3 when 21 filter-banks are implemented over a range of 0
to 1000 Hz.

Since LFCC has linear scaling, when the specified band-
width of 0 to 100 Hz is used, it should produce the same results
as CC. However Table II show that although LFCC is linear
in the specified bandwidth, the performance is still superior
to CC. Based on these results, it can infered that when the
specified frequency range is used, Mel-Scaling of MFCC does
not provide any substantial improvements for heart sounds
and using a linear scale gives similar results. The gains in
performance for LFCC over CC is speculated to be the result
of the implementation of filter-banks in the MFCC algorithm
in the specified bandwidth.

TABLE II
CRR FOR DIFFERENT NUMBER OF FILTER-BANKS FOR MFCC AND LCC

UP TO 100 HZ OF SIGNAL.

Type of coefficients CRR (%)

MFCC (51 filter-banks) 95.53
MFCC (11 filter-banks) 91.93
LFCC (51 filter-banks) 95.20
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Fig. 8. Linear and Mel-Scaled filter-banks from 0 to 1000 Hz.

V. CONCLUSION

In this paper, the performance of two widely used feature
extraction techniques for speaker identification in a PCG
biometric system is compared. In the MFCC system, the
optimum configuration gives a CRR of 95% while in the
cepstral coefficient system, the CRR peaks at 90%. Overall,
MFCC makes a better feature set as compared to cepstral
coefficients. Experimental results show that Mel-Scaling does
not provide any substantial benefit when the feature extraction
is restricted to the low frequency region (≤100 Hz). The
performance difference in performance is speculated to be
the result of the implementation of filter-banks in the MFCC
algorithm and not because of the Mel-Scaling.

As such, future works can be done to incorporate filter-
banks in other feature extraction algorithms in the low fre-
quency region to determine if the filter-banks improve on those
algorithms as well.
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