Search results for: Large Eddy Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5402

Search results for: Large Eddy Simulation

5192 A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface

Authors: Juergen Rossmann, Andre Kupetz, Roland Wischnewski

Abstract:

Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.

Keywords: 3-D simulation system, augmented reality, teleoperation of mobile robots, user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
5191 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications

Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar

Abstract:

Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.

Keywords: Boron Nitride Nanotube, Radiation Shielding, Young Modulus, Atomistic Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6680
5190 WEMax: Virtual Manned Assembly Line Generation

Authors: Won Kyung Ham, Kang Hoon Cho, Yongho Chung, Sang C. Park

Abstract:

Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.

Keywords: Performance Forecasting, Simulation, Virtual Manned Assembly Line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
5189 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
5188 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa

Abstract:

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
5187 Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4474
5186 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation

Authors: L. Grinis, V. Haslavsky

Abstract:

Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.

Keywords: Drilling, stuck-pipe, vibration, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
5185 Surgery Scheduling Using Simulation with Arena

Authors: J. A. López, C.I. López, J.E. Olguín, C. Camargo, J. M. López

Abstract:

The institutions seek to improve their performance and quality of service, so that their patients are satisfied. This research project aims, conduct a time study program in the area of gynecological surgery, to determine the current level of capacity and optimize the programming time in order to adequately respond to demand. The system is analyzed by waiting lines and uses the simulation using ARENA to evaluate proposals for improvement and optimization programming time each of the surgeries.

Keywords: Time study, waiting lines, reducing time, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
5184 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain

Authors: Ying Shang, Chencheng Wang

Abstract:

The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.

Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381
5183 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: Wind power, Uncertainty, Stochastic process, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3928
5182 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
5181 Simulation and Measurement the Radiation of an Antenna inside a Metallic Case using FDTD

Authors: Shabnam Ladan, M. S. Abrishamian

Abstract:

In this paper we have developed a FDTD simulation code which can treat wave propagation of a monopole antenna in a metallic case which covers with PML, and performed a series of three dimensional FDTD simulations of electromagnetic wave propagation in this space .We also provide a measurement set up in antenna lab and fortunately the simulations and measurements show good agreement. According to simulation and measurement results, we confirmed that the computer program which had been written in FORTRAN, works correctly.

Keywords: FDTD, EMC, monopole antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
5180 An Agent Based Simulation for Network Formation with Heterogeneous Agents

Authors: Hisashi Kojima, Masatora Daito

Abstract:

We investigate an asymmetric connections model with a dynamic network formation process, using an agent based simulation. We permit heterogeneity of agents- value. Valuable persons seem to have many links on real social networks. We focus on this point of view, and examine whether valuable agents change the structures of the terminal networks. Simulation reveals that valuable agents diversify the terminal networks. We can not find evidence that valuable agents increase the possibility that star networks survive the dynamic process. We find that valuable agents disperse the degrees of agents in each terminal network on an average.

Keywords: network formation, agent based simulation, connections model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
5179 Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis

Authors: Wang Chengcheng, Li Chuanri, Xu Fei, Guo Ying

Abstract:

Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.

Keywords: Random vibration, finite element simulation, fatigue, frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4710
5178 A New Heuristic Approach for the Stock- Cutting Problems

Authors: Stephen C. H. Leung, Defu Zhang

Abstract:

This paper addresses a stock-cutting problem with rotation of items and without the guillotine cutting constraint. In order to solve the large-scale problem effectively and efficiently, we propose a simple but fast heuristic algorithm. It is shown that this heuristic outperforms the latest published algorithms for large-scale problem instances.

Keywords: Combinatorial optimization, heuristic, large-scale, stock-cutting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
5177 Fabless Prototyping Methodology for the Development of SOI based MEMS Microgripper

Authors: H. M. Usman Sani, Shafaat A. Bazaz, Nisar Ahmed

Abstract:

In this paper, Fabless Prototyping Methodology is introduced for the design and analysis of MEMS devices. Conventionally Finite Element Analysis (FEA) is performed before system level simulation. In our proposed methodology, system level simulation is performed earlier than FEA as it is computationally less extensive and low cost. System level simulations are based on equivalent behavioral models of MEMS device. Electrostatic actuation based MEMS Microgripper is chosen as case study to implement this methodology. This paper addresses the behavioral model development and simulation of actuator part of an electrostatically actuated Microgripper. Simulation results show that the actuator part of Microgripper works efficiently for a voltage range of 0-45V with the corresponding jaw displacement of 0-4.5425μm. With some minor changes in design, this range can be enhanced to 15μm at 85V.

Keywords: MEMS Actuator, Behavioral Model, CoventorWare, Microgripper, SOIMUMPs, System Level Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
5176 Simulation of Agri-Food Supply Chains

Authors: Sherine Beshara, Khaled S. El-Kilany, Noha M. Galal

Abstract:

Supply chain management has become more challenging with the emerging trend of globalization and sustainability. Lately, research related to perishable products supply chains, in particular agricultural food products, has emerged. This is attributed to the additional complexity of managing this type of supply chains with the recently increased concern of public health, food quality, food safety, demand and price variability, and the limited lifetime of these products. Inventory management for agrifood supply chains is of vital importance due to the product perishability and customers- strive for quality. This paper concentrates on developing a simulation model of a real life case study of a two echelon production-distribution system for agri-food products. The objective is to improve a set of performance measures by developing a simulation model that helps in evaluating and analysing the performance of these supply chains. Simulation results showed that it can help in improving overall system performance.

Keywords: Agri-food supply chains, inventory model, modelling and Simulation, supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3362
5175 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches

Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez

Abstract:

Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.

Keywords: Structural reliability, reinforced concrete bridges, mixing approaches, point estimate method, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
5174 Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2

Authors: A.L.Deghal.Cheridi, A.Chaker, A.Loubar

Abstract:

loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.

Keywords: Radiant steam boiler, Relap5/Mod3.2 code system, Steady-state simulation, Transient simulation, Loss of feedwateraccident

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
5173 The First Integral Approach in Stability Problem of Large Scale Nonlinear Dynamical Systems

Authors: M. Kidouche, H. Habbi, M. Zelmat, S. Grouni

Abstract:

In analyzing large scale nonlinear dynamical systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solutions properties of the large scale system are then deduced from the solution properties of the individual subsystems and the nature of the interconnections. In this paper a new approach is proposed for the stability analysis of large scale systems, which is based upon the concept of vector Lyapunov functions and the decomposition methods. The present results make use of graph theoretic decomposition techniques in which the overall system is partitioned into a hierarchy of strongly connected components. We show then, that under very reasonable assumptions, the overall system is stable once the strongly connected subsystems are stables. Finally an example is given to illustrate the constructive methodology proposed.

Keywords: Comparison principle, First integral, Large scale system, Lyapunov stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
5172 Success Factors of Large Scale ERP Implementation in Thailand

Authors: Rotchanakitumnuai, Siriluck

Abstract:

The objectives of the study are to examine the determinants of ERP implementation success factors of ERP implementation. The result indicates that large scale ERP implementation success consist of eight factors: project management competence, knowledge sharing, ERP system quality , understanding, user involvement, business process re-engineering, top management support, organization readiness.

Keywords: large scale ERP, implementation success factors, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
5171 Simulation and Optimization of Mechanisms made of Micro-molded Components

Authors: Albert Albers, Pablo Enrique Leslabay

Abstract:

The Institute of Product Development is dealing with the development, design and dimensioning of micro components and systems as a member of the Collaborative Research Centre 499 “Design, Production and Quality Assurance of Molded micro components made of Metallic and Ceramic Materials". Because of technological restrictions in the miniaturization of conventional manufacturing techniques, shape and material deviations cannot be scaled down in the same proportion as the micro parts, rendering components with relatively wide tolerance fields. Systems that include such components should be designed with this particularity in mind, often requiring large clearance. On the end, the output of such systems results variable and prone to dynamical instability. To save production time and resources, every study of these effects should happen early in the product development process and base on computer simulation to avoid costly prototypes. A suitable method is proposed here and exemplary applied to a micro technology demonstrator developed by the CRC499. It consists of a one stage planetary gear train in a sun-planet-ring configuration, with input through the sun gear and output through the carrier. The simulation procedure relies on ordinary Multi Body Simulation methods and subsequently adds other techniques to further investigate details of the system-s behavior and to predict its response. The selection of the relevant parameters and output functions followed the engineering standards for regular sized gear trains. The first step is to quantify the variability and to reveal the most critical points of the system, performed through a whole-mechanism Sensitivity Analysis. Due to the lack of previous knowledge about the system-s behavior, different DOE methods involving small and large amount of experiments were selected to perform the SA. In this particular case the parameter space can be divided into two well defined groups, one of them containing the gear-s profile information and the other the components- spatial location. This has been exploited to explore the different DOE techniques more promptly. A reduced set of parameters is derived for further investigation and to feed the final optimization process, whether as optimization parameters or as external perturbation collective. The 10 most relevant perturbation factors and 4 to 6 prospective variable parameters are considered in a new, simplified model. All of the parameters are affected by the mentioned production variability. The objective functions of interest are based on scalar output-s variability measures, so the problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development path of a method to design and optimize complex micro mechanisms composed of wide tolerated elements accounting for the robustness and reliability of the systems- output.

Keywords: Micro molded components, Optimization, Robustness und Reliability, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
5170 Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100nm Technologies

Authors: Zina Saheb, Ezz El-Masry

Abstract:

As the Silicon oxide scaled down in MOSFET technology to few nanometers, gate Direct Tunneling (DT) in Floating gate (FGMOSFET) devices has become a major concern for analog designers. FGMOSFET has been used in many low-voltage and low-power applications, however, there is no accurate model that account for DT gate leakage in nano-scale. This paper studied and analyzed different simulation models for FGMOSFET using TSMC 90-nm technology. The simulation results for FGMOSFET cascade current mirror shows the impact of DT on circuit performance in terms of current and voltage without the need for fabrication. This works shows the significance of using an accurate model for FGMOSFET in nan-scale technologies.

Keywords: CMOS transistor, direct-tunneling current, floatinggate, gate-leakage current, simulation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
5169 Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire

Authors: J. Davoodi, F. Katouzi

Abstract:

The aim of this research was to calculate the thermal properties of Au3Ni Nanowire. The molecular dynamics (MD) simulation technique was used to obtain the effect of radius size on the energy, the melting temperature and the latent heat of fusion at the isobaric-isothermal (NPT) ensemble. The Quantum Sutton-Chen (Q-SC) many body interatomic potentials energy have been used for Gold (Au) and Nickel (Ni) elements and a mixing rule has been devised to obtain the parameters of these potentials for nanowire stats. Our MD simulation results show the melting temperature and latent heat of fusion increase upon increasing diameter of nanowire. Moreover, the cohesive energy decreased with increasing diameter of nanowire.

Keywords: Au3Ni Nanowire, Thermal properties, Molecular dynamics simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
5168 Simulation of Co2 Capture Process

Authors: K. Movagharnejad, M. Akbari

Abstract:

Carbon dioxide capture process has been simulated and studied under different process conditions. It has been shown that several process parameters such as lean amine temperature, number of adsorber stages, number of stripper stages and stripper pressure affect different process conditions and outputs such as carbon dioxide removal and reboiler duty. It may be concluded that the simulation of carbon dioxide capture process can help to estimate the best process conditions.

Keywords: Absorption, carbon dioxide capture, desorption, process simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
5167 Confidence Intervals for Double Exponential Distribution: A Simulation Approach

Authors: M. Alrasheedi

Abstract:

The double exponential model (DEM), or Laplace distribution, is used in various disciplines. However, there are issues related to the construction of confidence intervals (CI), when using the distribution.In this paper, the properties of DEM are considered with intention of constructing CI based on simulated data. The analysis of pivotal equations for the models here in comparisons with pivotal equations for normal distribution are performed, and the results obtained from simulation data are presented.

Keywords: Confidence intervals, double exponential model, pivotal equations, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3553
5166 Representing Uncertainty in Computer-Generated Forces

Authors: Ruibiao J. Guo, Brad Cain, Pierre Meunier

Abstract:

The Integrated Performance Modelling Environment (IPME) is a powerful simulation engine for task simulation and performance analysis. However, it has no high level cognition such as memory and reasoning for complex simulation. This article introduces a knowledge representation and reasoning scheme that can accommodate uncertainty in simulations of military personnel with IPME. This approach demonstrates how advanced reasoning models that support similarity-based associative process, rule-based abstract process, multiple reasoning methods and real-time interaction can be integrated with conventional task network modelling to provide greater functionality and flexibility when modelling operator performance.

Keywords: Computer-Generated Forces, Human Behaviour Representation, IPME, Modelling and Simulation, Uncertainty Reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
5165 Performance Prediction of Multi-Agent Based Simulation Applications on the Grid

Authors: Dawit Mengistu, Lars Lundberg, Paul Davidsson

Abstract:

A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.

Keywords: Grid computing, Performance modeling, Performance prediction, Multi-agent simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
5164 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
5163 Comparison between Solar Simulation and Infrared Technique for Thermal Balance Test

Authors: Tao Tao, Wang Jing, Cao Zhisong, Liu Yi, Qie Dianfu

Abstract:

The precision of heat flux simulation influences the temperature field and test aberration for TB test and also reflects the test level for spacecraft development. This paper describes TB tests for a small satellite using solar simulator, electric heaters, calrod heaters to evaluate the difference of the three methods. Under the same boundary condition, calrod heaters cases were about 6oC higher than solar simulator cases and electric heaters cases for non-external-heat-flux cases (extreme low temperature cases). While calrod heaters cases and electric heaters cases were 5~7oC and 2~3oC lower than solar simulator cases respectively for high temperature cases. The results show that the solar simulator is better than calrod heaters for its better collimation, non-homogeneity and stability.

Keywords: solar simulation, infrared simulation, TB test, TMM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756