WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/8918,
	  title     = {Simulation and Optimization of Mechanisms made of Micro-molded Components},
	  author    = {Albert Albers and  Pablo Enrique Leslabay},
	  country	= {},
	  institution	= {},
	  abstract     = {The Institute of Product Development is dealing
with the development, design and dimensioning of micro components
and systems as a member of the Collaborative Research
Centre 499 “Design, Production and Quality Assurance of
Molded micro components made of Metallic and Ceramic Materials".
Because of technological restrictions in the miniaturization
of conventional manufacturing techniques, shape and
material deviations cannot be scaled down in the same proportion
as the micro parts, rendering components with relatively
wide tolerance fields. Systems that include such components
should be designed with this particularity in mind, often requiring
large clearance. On the end, the output of such systems
results variable and prone to dynamical instability. To save
production time and resources, every study of these effects
should happen early in the product development process and
base on computer simulation to avoid costly prototypes. A
suitable method is proposed here and exemplary applied to a
micro technology demonstrator developed by the CRC499. It
consists of a one stage planetary gear train in a sun-planet-ring
configuration, with input through the sun gear and output
through the carrier. The simulation procedure relies on ordinary
Multi Body Simulation methods and subsequently adds
other techniques to further investigate details of the system-s
behavior and to predict its response. The selection of the relevant
parameters and output functions followed the engineering
standards for regular sized gear trains. The first step is to
quantify the variability and to reveal the most critical points of
the system, performed through a whole-mechanism Sensitivity
Analysis. Due to the lack of previous knowledge about the system-s
behavior, different DOE methods involving small and
large amount of experiments were selected to perform the SA.
In this particular case the parameter space can be divided into
two well defined groups, one of them containing the gear-s profile
information and the other the components- spatial location.
This has been exploited to explore the different DOE techniques
more promptly. A reduced set of parameters is derived for
further investigation and to feed the final optimization process,
whether as optimization parameters or as external perturbation
collective. The 10 most relevant perturbation factors and 4 to 6
prospective variable parameters are considered in a new, simplified
model. All of the parameters are affected by the mentioned
production variability. The objective functions of interest
are based on scalar output-s variability measures, so the
problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development
path of a method to design and optimize complex micro
mechanisms composed of wide tolerated elements accounting
for the robustness and reliability of the systems- output.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {3},
	  number    = {7},
	  year      = {2009},
	  pages     = {772 - 780},
	  ee        = {https://publications.waset.org/pdf/8918},
	  url   	= {https://publications.waset.org/vol/31},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 31, 2009},
	}