Search results for: Iterative method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8214

Search results for: Iterative method

8004 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.

Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
8003 Apply Super-SVA to SAR Imaging with Both Aperture Gaps and Bandwidth Gaps

Authors: Wenshuai Zhai, Yunhua Zhang

Abstract:

Synthetic aperture radar (SAR) imaging usually requires echo data collected continuously pulse by pulse with certain bandwidth. However in real situation, data collection or part of signal spectrum can be interrupted due to various reasons, i.e. there will be gaps in spatial spectrum. In this case we need to find ways to fill out the resulted gaps and get image with defined resolution. In this paper we introduce our work on how to apply iterative spatially variant apodization (Super-SVA) technique to extrapolate the spatial spectrum in both azimuthal and range directions so as to fill out the gaps and get correct radar image.

Keywords: SAR imaging, Sparse aperture, Stepped frequencychirp signal, high resolution, Super-SVA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
8002 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
8001 Approximate Method of Calculation of Inviscid Hypersonic Flow

Authors: F. Sokhanvar, A. B. Khoshnevis

Abstract:

In the present work steady inviscid hypersonic flows are calculated by approximate Method. Maslens' inverse method is the chosen approximate method. For the inverse problem, parabolic shock shape is chosen for the two-dimensional flow, and the body shape and flow field are calculated using Maslen's method. For the axisymmetric inverse problem paraboloidal shock is chosen and the surface distribution of pressure is obtained.

Keywords: Hypersonic flow, Inverse problem method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066
8000 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions

Authors: Chuanyun Gu

Abstract:

By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.

Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
7999 Convergence Analysis of the Generalized Alternating Two-Stage Method

Authors: Guangbin Wang, Liangliang Li, Fuping Tan

Abstract:

In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.

Keywords: Generalized alternating two-stage method, linear system, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
7998 Analysis of Distribution of Thrust, Torque and Efficiency of a Constant Chord, Constant Pitch C.R.P. Fan by H.E.S. Method

Authors: Morteza Abbaszadeh, Parvin Nikpoorparizi, Mina Shahrooz

Abstract:

For the first time since 1940 and presentation of theodorson-s theory, distribution of thrust, torque and efficiency along the blade of a counter rotating propeller axial fan was studied with a novel method in this research. A constant chord, constant pitch symmetric fan was investigated with Reynolds Stress Turbulence method in this project and H.E.S. method was utilized to obtain distribution profiles from C.F.D. tests outcome. C.F.D. test results were validated by estimation from Playlic-s analytical method. Final results proved ability of H.E.S. method to obtain distribution profiles from C.F.D test results and demonstrated interesting facts about effects of solidity and differences between distributions in front and rear section.

Keywords: C.F.D Test, Counter Rotating Propeller, H.E.S. Method, R.S.M. Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
7997 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: Interpolation, Approximate Solution, Collocation, Differential system, Half step, Converges, Block method, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
7996 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

Authors: Joe Imae, Kenjiro Shinagawa, Tomoaki Kobayashi, Guisheng Zhai

Abstract:

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Keywords: Nonlinear Control, Optimal Control, Hamilton-Jacobi Equation, Virtual-Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
7995 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

Keywords: Exact solution, The (3+1)-dimensional breaking soliton equation, ( G G )-expansion method, Riccati equation, Modified Fexpansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
7994 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
7993 The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology

Authors: Hassan Saberi-Nik, Mahin Golchaman

Abstract:

This paper applies the homotopy analysis method method to a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. Comparison of the approximate solution with the exact one reveals that the method is very effective.

Keywords: Homotopy analysis method, differential-difference, nanotechnology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
7992 Adomian Method for Second-order Fuzzy Differential Equation

Authors: Lei Wang, Sizong Guo

Abstract:

In this paper, we study the numerical method for solving second-order fuzzy differential equations using Adomian method under strongly generalized differentiability. And, we present an example with initial condition having four different solutions to illustrate the efficiency of the proposed method under strongly generalized differentiability.

Keywords: Fuzzy-valued function, fuzzy initial value problem, strongly generalized differentiability, adomian decomposition method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
7991 Multilevel Arnoldi-Tikhonov Regularization Methods for Large-Scale Linear Ill-Posed Systems

Authors: Yiqin Lin, Liang Bao

Abstract:

This paper is devoted to the numerical solution of large-scale linear ill-posed systems. A multilevel regularization method is proposed. This method is based on a synthesis of the Arnoldi-Tikhonov regularization technique and the multilevel technique. We show that if the Arnoldi-Tikhonov method is a regularization method, then the multilevel method is also a regularization one. Numerical experiments presented in this paper illustrate the effectiveness of the proposed method.

Keywords: Discrete ill-posed problem, Tikhonov regularization, discrepancy principle, Arnoldi process, multilevel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
7990 Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities

Authors: Min Sun, Jing Liu

Abstract:

In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.

Keywords: structured variational inequalities, proximal point method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
7989 A Method for Improving Dental Crown Fit-Increasing the Robustness

Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.

Abstract:

The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.

Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
7988 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin

Abstract:

This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
7987 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
7986 The Reliability of the Improved e-N Method for Transition Prediction as Checked by PSE Method

Authors: Caihong Su

Abstract:

Transition prediction of boundary layers has always been an important problem in fluid mechanics both theoretically and practically, yet notwithstanding the great effort made by many investigators, there is no satisfactory answer to this problem. The most popular method available is so-called e-N method which is heavily dependent on experiments and experience. The author has proposed improvements to the e-N method, so to reduce its dependence on experiments and experience to a certain extent. One of the key assumptions is that transition would occur whenever the velocity amplitude of disturbance reaches 1-2% of the free stream velocity. However, the reliability of this assumption needs to be verified. In this paper, transition prediction on a flat plate is investigated by using both the improved e-N method and the parabolized stability equations (PSE) methods. The results show that the transition locations predicted by both methods agree reasonably well with each other, under the above assumption. For the supersonic case, the critical velocity amplitude in the improved e-N method should be taken as 0.013, whereas in the subsonic case, it should be 0.018, both are within the range 1-2%.

Keywords: Boundary layer, e-N method, PSE, Transition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
7985 Variational Iteration Method for the Solution of Boundary Value Problems

Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.

Abstract:

In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.

Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
7984 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm

Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah

Abstract:

In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.

Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
7983 Haar Wavelet Method for Solving Fitz Hugh-Nagumo Equation

Authors: G.Hariharan, K.Kannan

Abstract:

In this paper, we develop an accurate and efficient Haar wavelet method for well-known FitzHugh-Nagumo equation. The proposed scheme can be used to a wide class of nonlinear reaction-diffusion equations. The power of this manageable method is confirmed. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computationally attractive.

Keywords: FitzHugh-Nagumo equation, Haar wavelet method, adomain decomposition method, computationally attractive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
7982 Equivalence Class Subset Algorithm

Authors: Jeffrey L. Duffany

Abstract:

The equivalence class subset algorithm is a powerful tool for solving a wide variety of constraint satisfaction problems and is based on the use of a decision function which has a very high but not perfect accuracy. Perfect accuracy is not required in the decision function as even a suboptimal solution contains valuable information that can be used to help find an optimal solution. In the hardest problems, the decision function can break down leading to a suboptimal solution where there are more equivalence classes than are necessary and which can be viewed as a mixture of good decision and bad decisions. By choosing a subset of the decisions made in reaching a suboptimal solution an iterative technique can lead to an optimal solution, using series of steadily improved suboptimal solutions. The goal is to reach an optimal solution as quickly as possible. Various techniques for choosing the decision subset are evaluated.

Keywords: np-complete, complexity, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
7981 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis

Authors: A.K. Tangirala, S. Babji

Abstract:

In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.

Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
7980 A Method for Measurement and Evaluation of Drape of Textiles

Authors: L. Fridrichova, R. Knížek, V. Bajzík

Abstract:

Drape is one of the important visual characteristics of the fabric. This paper is introducing an innovative method of measurement and evaluation of the drape shape of the fabric. The measuring principle is based on the possibility of multiple vertical strain of the fabric. This method more accurately simulates the real behavior of the fabric in the process of draping. The method is fully automated, so the sample can be measured by using any number of cycles in any time horizon. Using the present method of measurement, we are able to describe the viscoelastic behavior of the fabric.

Keywords: Drape, drape shape, automated drape meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
7979 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions

Authors: Mohammed Salem Alzahrani

Abstract:

In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all programs of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.

Keywords: Admission Process Model, Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
7978 A Dual Method for Solving General Convex Quadratic Programs

Authors: Belkacem Brahmi, Mohand Ouamer Bibi

Abstract:

In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.

Keywords: Convex quadratic programming, dual support methods, active set methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
7977 Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Authors: N. Senu, I. A. Kasim, F. Ismail, N. Bachok

Abstract:

In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.

Keywords: Dissipation, Oscillatory solutions, Phase-lag, Runge- Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
7976 Selection Initial modes for Belief K-modes Method

Authors: Sarra Ben Hariz, Zied Elouedi, Khaled Mellouli

Abstract:

The belief K-modes method (BKM) approach is a new clustering technique handling uncertainty in the attribute values of objects in both the cluster construction task and the classification one. Like the standard version of this method, the BKM results depend on the chosen initial modes. So, one selection method of initial modes is developed, in this paper, aiming at improving the performances of the BKM approach. Experiments with several sets of real data show that by considered the developed selection initial modes method, the clustering algorithm produces more accurate results.

Keywords: Clustering, Uncertainty, Belief function theory, Belief K-modes Method, Initial modes selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
7975 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations

Authors: Sara Barati, Karim Ivaz

Abstract:

In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.

Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479