Search results for: Graph similarity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 677

Search results for: Graph similarity

467 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure

Authors: S.Aranganayagi, K.Thangavel

Abstract:

Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.

Keywords: Clustering, Categorical, Incremental, Frequency, Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
466 A Hamiltonian Decomposition of 5-star

Authors: Walter Hussak, Heiko Schröder

Abstract:

Star graphs are Cayley graphs of symmetric groups of permutations, with transpositions as the generating sets. A star graph is a preferred interconnection network topology to a hypercube for its ability to connect a greater number of nodes with lower degree. However, an attractive property of the hypercube is that it has a Hamiltonian decomposition, i.e. its edges can be partitioned into disjoint Hamiltonian cycles, and therefore a simple routing can be found in the case of an edge failure. The existence of Hamiltonian cycles in Cayley graphs has been known for some time. So far, there are no published results on the much stronger condition of the existence of Hamiltonian decompositions. In this paper, we give a construction of a Hamiltonian decomposition of the star graph 5-star of degree 4, by defining an automorphism for 5-star and a Hamiltonian cycle which is edge-disjoint with its image under the automorphism.

Keywords: interconnection networks, paths and cycles, graphs andgroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
465 Efficient and Effective Gabor Feature Representation for Face Detection

Authors: Yasuomi D. Sato, Yasutaka Kuriya

Abstract:

We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jones object detection algorithm of the AdaBoost Haar-like feature cascade. We also show rapid detection speeds of the MS-EGM, comparable to the Viola-Jones method. We find fruitful benefits in the MS-EGM, in terms of topological feature representation for a face.

Keywords: Face detection, Gabor wavelet based pyramid, elastic graph matching, topological preservation, redundancy of computational complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
464 Wasp Venom Peptides may play a role in the Pathogenesis of Acute Disseminated Encephalomyelitis in Humans: A Structural Similarity Analysis

Authors: Permphan Dharmasaroja

Abstract:

Acute disseminated encephalomyelitis (ADEM) has been reported to develop after a hymenoptera sting, but its pathogenesis is not known in detail. Myelin basic protein (MBP)- specific T cells have been detected in the blood of patients with ADEM, and a proportion of these patients develop multiple sclerosis (MS). In an attempt to understand the mechanisms underlying ADEM, molecular mimicry between hymenoptera venom peptides and the human immunodominant MBP peptide was scrutinized, based on the sequence and structural similarities, whether it was the root of the disease. The results suggest that the three wasp venom peptides have low sequence homology with the human immunodominant MBP residues 85-99. Structural similarity analysis among the three venom peptides and the MS-related HLA-DR2b (DRA, DRB1*1501)-associated immunodominant MHC binding/TCR contact residues 88-93, VVHFFK showed that hyaluronidase residues 7-12, phospholipase A1 residues 98-103, and antigen 5 residues 109-114 showed a high degree of similarity 83.3%, 100%, and 83.3% respectively. In conclusion, some wasp venom peptides, particularly phospholipase A1, may potentially act as the molecular motifs of the human 3HLA-DR2b-associated immunodominant MBP88-93, and possibly present a mechanism for induction of wasp sting-associated ADEM.

Keywords: central nervous system, Hymenoptera, myelin basicprotein, molecular mimicry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
463 Image Indexing Using a Color Similarity Metric based on the Human Visual System

Authors: Angelo Nodari, Ignazio Gallo

Abstract:

The novelty proposed in this study is twofold and consists in the developing of a new color similarity metric based on the human visual system and a new color indexing based on a textual approach. The new color similarity metric proposed is based on the color perception of the human visual system. Consequently the results returned by the indexing system can fulfill as much as possibile the user expectations. We developed a web application to collect the users judgments about the similarities between colors, whose results are used to estimate the metric proposed in this study. In order to index the image's colors, we used a text indexing engine to facilitate the integration of visual features in a database of text documents. The textual signature is build by weighting the image's colors in according to their occurrence in the image. The use of a textual indexing engine, provide us a simple, fast and robust solution to index images. A typical usage of the system proposed in this study, is the development of applications whose data type is both visual and textual. In order to evaluate the proposed method we chose a price comparison engine as a case of study, collecting a series of commercial offers containing the textual description and the image representing a specific commercial offer.

Keywords: Color Extraction, Content-Based Image Retrieval, Indexing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027
462 A Graph-Based Approach for Placement of No-Replicated Databases in Grid

Authors: Cherif Haddad, Faouzi Ben Charrada

Abstract:

On a such wide-area environment as a Grid, data placement is an important aspect of distributed database systems. In this paper, we address the problem of initial placement of database no-replicated fragments in Grid architecture. We propose a graph based approach that considers resource restrictions. The goal is to optimize the use of computing, storage and communication resources. The proposed approach is developed in two phases: in the first phase, we perform fragment grouping using knowledge about fragments dependency and, in the second phase, we determine an efficient placement of the fragment groups on the Grid. We also show, via experimental analysis that our approach gives solutions that are close to being optimal for different databases and Grid configurations.

Keywords: Grid computing, Distributed systems, Data resourcesmanagement, Database systems, Database placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
461 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: Genetic algorithm, similarity and dissimilarity, chromosome injection, dynamic schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
460 An Efficient Heuristic for the Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks

Authors: S. Balaji, N. Revathi

Abstract:

Connected dominating set (CDS) problem in unit disk graph has signi£cant impact on an ef£cient design of routing protocols in wireless sensor networks, where the searching space for a route is reduced to nodes in the set. A set is dominating if all the nodes in the system are either in the set or neighbors of nodes in the set. In this paper, a simple and ef£cient heuristic method is proposed for £nding a minimum connected dominating set (MCDS) in ad hoc wireless networks based on the new parameter support of vertices. With this parameter the proposed heuristic approach effectively £nds the MCDS of a graph. Extensive computational experiments show that the proposed approach outperforms the recently proposed heuristics found in the literature for the MCD

Keywords: ad hoc wireless networks, dominating sets, unit disk graphs, heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
459 Power and Delay Optimized Graph Representation for Combinational Logic Circuits

Authors: Padmanabhan Balasubramanian, Karthik Anantha

Abstract:

Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.

Keywords: AND-Inverter Graph, OR-Inverter Graph, DirectedAcyclic Graph, Low power design, Delay optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
458 Consistent Modeling of Functional Dependencies along with World Knowledge

Authors: Sven Rebhan, Nils Einecke, Julian Eggert

Abstract:

In this paper we propose a method for vision systems to consistently represent functional dependencies between different visual routines along with relational short- and long-term knowledge about the world. Here the visual routines are bound to visual properties of objects stored in the memory of the system. Furthermore, the functional dependencies between the visual routines are seen as a graph also belonging to the object-s structure. This graph is parsed in the course of acquiring a visual property of an object to automatically resolve the dependencies of the bound visual routines. Using this representation, the system is able to dynamically rearrange the processing order while keeping its functionality. Additionally, the system is able to estimate the overall computational costs of a certain action. We will also show that the system can efficiently use that structure to incorporate already acquired knowledge and thus reduce the computational demand.

Keywords: Adaptive systems, Knowledge representation, Machinevision, Systems engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
457 A Similarity Metric for Assessment of Image Fusion Algorithms

Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah

Abstract:

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Keywords: Fusion performance measures, image fusion, nonreferencequality measures, objective quality measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
456 Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods

Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo

Abstract:

This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.

Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
455 Automatic Generation of OWL Ontologies from UML Class Diagrams Based on Meta- Modelling and Graph Grammars

Authors: Aissam Belghiat, Mustapha Bourahla

Abstract:

Models are placed by modeling paradigm at the center of development process. These models are represented by languages, like UML the language standardized by the OMG which became necessary for development. Moreover the ontology engineering paradigm places ontologies at the center of development process; in this paradigm we find OWL the principal language for knowledge representation. Building ontologies from scratch is generally a difficult task. The bridging between UML and OWL appeared on several regards such as the classes and associations. In this paper, we have to profit from convergence between UML and OWL to propose an approach based on Meta-Modelling and Graph Grammars and registered in the MDA architecture for the automatic generation of OWL ontologies from UML class diagrams. The transformation is based on transformation rules; the level of abstraction in these rules is close to the application in order to have usable ontologies. We illustrate this approach by an example.

Keywords: ATOM3, MDA, Ontology, OWL, UML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24906
454 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: Self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
453 A Comprehensive model for developing of Steer-By-Wire System

Authors: Reza Kazemi , Iman Mousavinejad

Abstract:

Steer-By-Wire ( SBW ) has several advantages of packaging flexibility , advanced vehicle control system ,and superior performance . SBW has no mechanical linkage between the steering gear and the steering column. It is possible to control the steering wheel and the front-wheel steering independently. SBW system is composed of two motors controlled by ECU. One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability and stability. This paper shows a new approach at modeling of SBW system by Bond Graph theory. The mechanical parts , the steering wheel motor and the front wheel motor will be modeled by this theory. The work in the paper will help to guide further researches on control algorithm of the SBW system .

Keywords: Steer-By-Wire ( SBW ), Bond Graph theory, Electronic-Control-Unit ( ECU ) , Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3653
452 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: Missing values, distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
451 Open Source Implementation of M-Learning for Primary School in Malaysia

Authors: Saipunidzam Mahamad, Mohammad Noor Ibrahim, Mohamad Izzriq Ab Malek Foad, ShakirahMohd Taib

Abstract:

With the proliferation of the mobile device technologies, mobile learning can be used to complement and improve traditional learning problems. Both students and teachers need a proper and handy system to monitor and keep track the performance of the students. This paper presents an implementation of M-learning for primary school in Malaysia by using an open source technology. It focuses on learning mathematics using handheld devices for primary schools- students aged 11 and 12 years old. Main users for this system include students, teachers and the administrator. This application suggests a new mobile learning environment with mobile graph for tracking the students- progress and performance. The purpose of this system is not to replace traditional classroom but to complement the learning process. In a testing conducted, students who used this system performed better in their examination.

Keywords: M-Learning, Automated Mobile Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
450 Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat

Authors: Mustafa Yorgancılar, Emine Atalay, Necdet Akgün, Ali Topal

Abstract:

In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes.

Keywords: Barley, crossbreed, genetic similarity, ISSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
449 A Lifetime-Guaranteed Routing Scheme in Wireless Sensor Networks

Authors: Jae Keun Park, Sung Je Hong, Kyong Hoon Kim, Tae Heum Kang, Wan Yeon Lee

Abstract:

In this paper, we propose a routing scheme that guarantees the residual lifetime of wireless sensor networks where each sensor node operates with a limited budget of battery energy. The scheme maximizes the communications QoS while sustaining the residual battery lifetime of the network for a specified duration. Communication paths of wireless nodes are translated into a directed acyclic graph(DAG) and the maximum-flow algorithm is applied to the graph. The found maximum flow are assigned to sender nodes, so as to maximize their communication QoS. Based on assigned flows, the scheme determines the routing path and the transmission rate of data packet so that any sensor node on the path would not exhaust its battery energy before a specified duration.

Keywords: Sensor network, battery, residual lifetime, routingscheme, QoS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
448 XML Schema Automatic Matching Solution

Authors: Huynh Quyet Thang, Vo Sy Nam

Abstract:

Schema matching plays a key role in many different applications, such as schema integration, data integration, data warehousing, data transformation, E-commerce, peer-to-peer data management, ontology matching and integration, semantic Web, semantic query processing, etc. Manual matching is expensive and error-prone, so it is therefore important to develop techniques to automate the schema matching process. In this paper, we present a solution for XML schema automated matching problem which produces semantic mappings between corresponding schema elements of given source and target schemas. This solution contributed in solving more comprehensively and efficiently XML schema automated matching problem. Our solution based on combining linguistic similarity, data type compatibility and structural similarity of XML schema elements. After describing our solution, we present experimental results that demonstrate the effectiveness of this approach.

Keywords: XML Schema, Schema Matching, SemanticMatching, Automatic XML Schema Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
447 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
446 Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper presents a multiple criteria decision making analysis technique for selecting fighter aircraft for the national air force. The selection of military aircraft is a process consisting of contradictory goals and objectives. When a modern air force needs to choose fighter aircraft to upgrade existing fleets, a multiple criteria decision making analysis and scenario planning for defense acquisition has been put forward. The selection of fighter aircraft for the air defense force is a strategic decision making process, since the purchase or lease of fighter jets, maintenance and operating costs and having a fleet is the biggest cost for the air force. Multiple criteria decision making analysis methods are effectively applied to facilitate decision making from various available options. The selection criteria were determined using the literature on the problem of fighter aircraft selection. The selection of fighter aircraft to be purchased for the air defense forces is handled using a multiple criteria decision making analysis technique that also determines a suitable methodological approach for the defense procurement and fleet upgrade planning process. The aim of this study is to originate an approach to evaluate fighter aircraft alternatives, Su-35, F-35, and TF-X (MMU), based on technique for order preference by similarity to ideal solution (TOPSIS).

Keywords: Fighter Aircraft, Fighter Aircraft Selection, Technique for Order Preference by Similarity to Ideal Solution, TOPSIS, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA, Su-35, F-35, TF-X (MMU)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
445 Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents

Authors: Azze-Eddine Maredj, Nourredine Tonkin

Abstract:

The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.

Keywords: Conceptual Neighborhood Graph, Relaxation Graphs, Relations with Delays, Semantic Adaptation of Multimedia Documents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
444 Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow

Authors: Ali Shatnawi

Abstract:

Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.

Keywords: Data flow graph, Iteration period bound, Rateoptimalscheduling, Recursive DSP algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
443 Computing Entropy for Ortholog Detection

Authors: Hsing-Kuo Pao, John Case

Abstract:

Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.

Keywords: compression, decision tree, entropy, ortholog, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
442 Evolutionary Distance in the Yeast Genome

Authors: Somayyeh Azizi, Saeed Kaboli, Atsushi Yagi

Abstract:

Whole genome duplication (WGD) increased the number of yeast Saccharomyces cerevisiae chromosomes from 8 to 16. In spite of retention the number of chromosomes in the genome of this organism after WGD to date, chromosomal rearrangement events have caused an evolutionary distance between current genome and its ancestor. Studies under evolutionary-based approaches on eukaryotic genomes have shown that the rearrangement distance is an approximable problem. In the case of S. cerevisiae, we describe that rearrangement distance is accessible by using dedoubled adjacency graph drawn for 55 large paired chromosomal regions originated from WGD. Then, we provide a program extracted from a C program database to draw a dedoubled genome adjacency graph for S. cerevisiae. From a bioinformatical perspective, using the duplicated blocks of current genome in S. cerevisiae, we infer that genomic organization of eukaryotes has the potential to provide valuable detailed information about their ancestrygenome.

Keywords: Whole-genome duplication, Evolution, Double-cutand- join operation, Yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
441 Operational- Economics Based Evaluation And Selection of A Power Plant Using Graph Theoretic Approach

Authors: Naresh Yadav, I.A. Khan, Sandeep Grover

Abstract:

This paper presents a methodology for operational and economic characteristics based evaluation and selection of a power plant using Graph theoretic approach. A universal evaluation index on the basis of Operational and economics characteristics of a plant is proposed which evaluates and ranks the various types of power plants. The index thus obtained from the pool of operational characteristics of the power plant attributes Digraph. The Digraph is developed considering Operational and economics attributes of the power plants and their relative importance for their smooth operation, installation and commissioning and prioritizing their selection. The sensitivity analysis of the attributes towards the objective has also been carried out in order to study the impact of attributes over the desired outcome i.e. the universal operational-economics index of the power plant.

Keywords: Power plant evaluation, Digraph methods, Matrixmethod, operational characteristics of Power plant, Gas turbines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
440 An Atomic-Domains-Based Approach for Attack Graph Generation

Authors: Fangfang Chen, Chunlu Wang, Zhihong Tian, Shuyuan Jin, Tianle Zhang

Abstract:

Attack graph is an integral part of modeling the overview of network security. System administrators use attack graphs to determine how vulnerable their systems are and to determine what security measures to deploy to defend their systems. Previous methods on AGG(attack graphs generation) are aiming at the whole network, which makes the process of AGG complex and non-scalable. In this paper, we propose a new approach which is simple and scalable to AGG by decomposing the whole network into atomic domains. Each atomic domain represents a host with a specific privilege. Then the process for AGG is achieved by communications among all the atomic domains. Our approach simplifies the process of design for the whole network, and can gives the attack graphs including each attack path for each host, and when the network changes we just carry on the operations of corresponding atomic domains which makes the process of AGG scalable.

Keywords: atomic domain, vulnerability, attack graphs, generation, computer security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
439 Automata Theory Approach for Solving Frequent Pattern Discovery Problems

Authors: Renáta Iváncsy, István Vajk

Abstract:

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
438 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches, and provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scene segments consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics by statistical learning method. To tackle this problem, we propose a method to improve topic quality with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, more accurate topical representations lead to get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. By iteratively inferring topics and determining semantically neighborhood scene segments, we draw a topic space represents broadcasting contents well. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: Broadcasting contents, generalized P´olya urn model, scripts, text similarity, topic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817