Search results for: Gaussian linearization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 340

Search results for: Gaussian linearization

130 A new Adaptive Approach for Histogram based Mouth Segmentation

Authors: Axel Panning, Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.

Keywords: Feature extraction, Segmentation, Image processing, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
129 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
128 Digital Automatic Gain Control Integrated on WLAN Platform

Authors: Emilija Miletic, Milos Krstic, Maxim Piz, Michael Methfessel

Abstract:

In this work we present a solution for DAGC (Digital Automatic Gain Control) in WLAN receivers compatible to IEEE 802.11a/g standard. Those standards define communication in 5/2.4 GHz band using Orthogonal Frequency Division Multiplexing OFDM modulation scheme. WLAN Transceiver that we have used enables gain control over Low Noise Amplifier (LNA) and a Variable Gain Amplifier (VGA). The control over those signals is performed in our digital baseband processor using dedicated hardware block DAGC. DAGC in this process is used to automatically control the VGA and LNA in order to achieve better signal-to-noise ratio, decrease FER (Frame Error Rate) and hold the average power of the baseband signal close to the desired set point. DAGC function in baseband processor is done in few steps: measuring power levels of baseband samples of an RF signal,accumulating the differences between the measured power level and actual gain setting, adjusting a gain factor of the accumulation, and applying the adjusted gain factor the baseband values. Based on the measurement results of RSSI signal dependence to input power we have concluded that this digital AGC can be implemented applying the simple linearization of the RSSI. This solution is very simple but also effective and reduces complexity and power consumption of the DAGC. This DAGC is implemented and tested both in FPGA and in ASIC as a part of our WLAN baseband processor. Finally, we have integrated this circuit in a compact WLAN PCMCIA board based on MAC and baseband ASIC chips designed from us.

Keywords: WLAN, AGC, RSSI, baseband processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3952
127 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
126 Characteristic Study on Conventional and Soliton Based Transmission System

Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian

Abstract:

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and Hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system respectively and evaluate the system performance in terms of Quality factor. From the analysis, we could prove that the soliton pulse has the consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Keywords: Soliton, dispersion length, Soliton period, Return-tozero (RZ), Q-factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
125 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
124 EMD-Based Signal Noise Reduction

Authors: A.O. Boudraa, J.C. Cexus, Z. Saidi

Abstract:

This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.

Keywords: Empirical mode decomposition, Signal denoisingnonstationary process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4013
123 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms

Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal

Abstract:

In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.

Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
122 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.

Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
121 A Methodological Approach for Detecting Burst Noise in the Time Domain

Authors: Liu Dan, Wang Xue, Wang Guiqin, Qian Zhihong

Abstract:

The burst noise is a kind of noises that are destructive and frequently found in semiconductor devices and ICs, yet detecting and removing the noise has proved challenging for IC designers or users. According to the properties of burst noise, a methodological approach is presented (proposed) in the paper, by which the burst noise can be analysed and detected in time domain. In this paper, principles and properties of burst noise are expounded first, Afterwards, feasibility (viable) of burst noise detection by means of wavelet transform in the time domain is corroborated in the paper, and the multi-resolution characters of Gaussian noise, burst noise and blurred burst noise are discussed in details by computer emulation. Furthermore, the practical method to decide parameters of wavelet transform is acquired through a great deal of experiment and data statistics. The methodology may yield an expectation in a wide variety of applications.

Keywords: Burst noise, detection, wavelet transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
120 Evaluating Spectral Relationships between Signals by Removing the Contribution of a Common, Periodic Source A Partial Coherence-based Approach

Authors: Antonio Mauricio F. L. Miranda de Sá

Abstract:

Partial coherence between two signals removing the contribution of a periodic, deterministic signal is proposed for evaluating the interrelationship in multivariate systems. The estimator expression was derived and shown to be independent of such periodic signal. Simulations were used for obtaining its critical value, which were found to be the same as those for Gaussian signals, as well as for evaluating the technique. An Illustration with eletroencephalografic (EEG) signals during photic stimulation is also provided. The application of the proposed technique in both simulation and real EEG data indicate that it seems to be very specific in removing the contribution of periodic sources. The estimate independence of the periodic signal may widen partial coherence application to signal analysis, since it could be used together with simple coherence to test for contamination in signals by a common, periodic noise source.

Keywords: Partial coherence, periodic input, spectral analysis, statistical signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
119 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
118 Self Organizing Mixture Network in Mixture Discriminant Analysis: An Experimental Study

Authors: Nazif Çalış, Murat Erişoğlu, Hamza Erol, Tayfun Servi

Abstract:

In the recent works related with mixture discriminant analysis (MDA), expectation and maximization (EM) algorithm is used to estimate parameters of Gaussian mixtures. But, initial values of EM algorithm affect the final parameters- estimates. Also, when EM algorithm is applied two times, for the same data set, it can be give different results for the estimate of parameters and this affect the classification accuracy of MDA. Forthcoming this problem, we use Self Organizing Mixture Network (SOMN) algorithm to estimate parameters of Gaussians mixtures in MDA that SOMN is more robust when random the initial values of the parameters are used [5]. We show effectiveness of this method on popular simulated waveform datasets and real glass data set.

Keywords: Self Organizing Mixture Network, MixtureDiscriminant Analysis, Waveform Datasets, Glass Identification, Mixture of Multivariate Normal Distributions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
117 Audio Watermarking Using Spectral Modifications

Authors: Jyotsna Singh, Parul Garg, Alok Nath De

Abstract:

In this paper, we present a non-blind technique of adding the watermark to the Fourier spectral components of audio signal in a way such that the modified amplitude does not exceed the maximum amplitude spread (MAS). This MAS is due to individual Discrete fourier transform (DFT) coefficients in that particular frame, which is derived from the Energy Spreading function given by Schroeder. Using this technique one can store double the information within a given frame length i.e. overriding the watermark on the host of equal length with least perceptual distortion. The watermark is uniformly floating on the DFT components of original signal. This helps in detecting any intentional manipulations done on the watermarked audio. Also, the scheme is found robust to various signal processing attacks like presence of multiple watermarks, Additive white gaussian noise (AWGN) and mp3 compression.

Keywords: Discrete Fourier Transform, Spreading Function, Watermark, Pseudo Noise Sequence, Spectral Masking Effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
116 Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis

Authors: S. P. Kozaitis, R. L. Kriner

Abstract:

The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.

Keywords: digital signals, electronics, IBIS model, printedcircuit board, wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
115 Impact of the Decoder Connection Schemes on Iterative Decoding of GPCB Codes

Authors: Fouad Ayoub, Mohammed Lahmer, Mostafa Belkasmi, El Houssine Bouyakhf

Abstract:

In this paper we present a study of the impact of connection schemes on the performance of iterative decoding of Generalized Parallel Concatenated block (GPCB) constructed from one step majority logic decodable (OSMLD) codes and we propose a new connection scheme for decoding them. All iterative decoding connection schemes use a soft-input soft-output threshold decoding algorithm as a component decoder. Numerical result for GPCB codes transmitted over Additive White Gaussian Noise (AWGN) channel are provided. It will show that the proposed scheme is better than Hagenauer-s scheme and Lucas-s scheme [1] and slightly better than the Pyndiah-s scheme.

Keywords: Generalized parallel concatenated block codes, OSMLD codes, threshold decoding, iterative decoding scheme, and performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
114 Robust and Transparent Spread Spectrum Audio Watermarking

Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi

Abstract:

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

Keywords: Audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
113 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
112 Vessel Inscribed Trigonometry to Measure the Vessel Progressive Orientations in the Digital Fundus Image

Authors: Pil Un Kim, Yunjung Lee, Gihyoun Lee, Jin Ho Cho, Myoung Nam Kim

Abstract:

In this paper, the vessel inscribed trigonometry (VITM) for the vessel progression orientation (VPO) is proposed in the two-dimensional fundus image. The VPO is a major factor in the optic disc (OD) detection which is a basic process in the retina analysis. To measure the VPO, skeletons of vessel are used. First, the vessels are classified into three classes as vessel end, vessel branch and vessel stem. And the chain code maps of VS are generated. Next, two farthest neighborhoods of each point on VS are searched by the proposed angle restriction. Lastly, a gradient of the straight line between two farthest neighborhoods is estimated to measure the VPO. VITM is validated by comparing with manual results and 2D Gaussian templates. It is confirmed that VPO of the proposed mensuration is correct enough to detect OD from the results of experiment which applied VITM to detect OD in fundus images.

Keywords: Angle measurement, Optic disc, Retina vessel, Vessel progression orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
111 Elimination Noise by Adaptive Wavelet Threshold

Authors: Iman Elyasi, Sadegh Zarmehi

Abstract:

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

Keywords: Image denoising, Bayes Shrink, Modified Bayes Shrink, Normal Shrink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
110 Using Exponential Lévy Models to Study Implied Volatility patterns for Electricity Options

Authors: Pinho C., Madaleno M.

Abstract:

German electricity European options on futures using Lévy processes for the underlying asset are examined. Implied volatility evolution, under each of the considered models, is discussed after calibrating for the Merton jump diffusion (MJD), variance gamma (VG), normal inverse Gaussian (NIG), Carr, Geman, Madan and Yor (CGMY) and the Black and Scholes (B&S) model. Implied volatility is examined for the entire sample period, revealing some curious features about market evolution, where data fitting performances of the five models are compared. It is shown that variance gamma processes provide relatively better results and that implied volatility shows significant differences through time, having increasingly evolved. Volatility changes for changed uncertainty, or else, increasing futures prices and there is evidence for the need to account for seasonality when modelling both electricity spot/futures prices and volatility.

Keywords: Calibration, Electricity Markets, Implied Volatility, Lévy Models, Options on Futures, Pricing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4812
109 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: Decentralized, optimal control, output, singular perturb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
108 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection

Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu

Abstract:

Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.

Keywords: detection, intersection, mixed traffic, moving objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
107 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter

Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.

Abstract:

This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.

Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
106 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.

Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9159
105 Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System

Authors: S. Hariharan, P. Muthuchidambaranathan

Abstract:

In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.

Keywords: Cooperative MU-MIMO, DVB-T, Linear Equalizers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
104 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual

Abstract:

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
103 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: Noise, signal-to-noise ratio, stochastic signals, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
102 Investigation on Metalosalen Complexes Binding to DNA using Ab Initio Calculations

Authors: M. Jahangiri Lahkani, Gh. Ghassemi, N. Sohrabi, N. Rasooli

Abstract:

Geometry optimizations of metal complexes of Salen(bis(Salicylidene)1,2-ethylenediamine) were carried out at HF and DFT methods employing Lanl2DZ basis set. In this work structural, energies, bond lengths and other physical properties between Mn2+,Cu2+ and Ni2+ ions coordinated by salen–type ligands are examined. All calculations were performed using Gaussian 98W program series. To investigate local aromaticities, NICS were calculated at all centers of rings. The higher the band gap indicating a higher global aromaticity. The possible binding energies have been evaluated. We have evaluated Frequencies and Zero-point energy with freq calculation. The NICS(Nucleous Independent Chemical Shift) Results show Ni(II) complexes are antiaromatic and aromaticites of Mn(II) complexes are larger than Cu(II) complexes. The energy Results show Cu(II) complexes are stability than Mn(II) and Ni(II) complexes.

Keywords: Frequency Calculation, Hartree-Fock (HF), Nucleous Independent Chemical Shift (NICS), Salen(bis(Salicylidene)1, 2-ethylenediamine).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
101 Centralized Cooperative Spectrum Sensing with MIMO in the Reporting Network over κ − μ Fading Channel

Authors: S Hariharan, K Chaitanya, P Muthuchidambaranathan

Abstract:

The IEEE 802.22 working group aims to drive the Digital Video Broadcasting-Terrestrial (DVB-T) bands for data communication to the rural area without interfering the TV broadcast. In this paper, we arrive at a closed-form expression for average detection probability of Fusion center (FC) with multiple antenna over the κ − μ fading channel model. We consider a centralized cooperative multiple antenna network for reporting. The DVB-T samples forwarded by the secondary user (SU) were combined using Maximum ratio combiner at FC, an energy detection is performed to make the decision. The fading effects of the channel degrades the detection probability of the FC, a generalized independent and identically distributed (IID) κ − μ and an additive white Gaussian noise (AWGN) channel is considered for reporting and sensing respectively. The proposed system performance is verified through simulation results.

Keywords: IEEE 802.22, Cooperative spectrum sensing, Multiple antenna, κ − μ .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5458