Search results for: Data transformation
7654 Highly Scalable, Reversible and Embedded Image Compression System
Authors: Federico Pérez González, Iñaki Goiricelaia Ordorika, Pedro Iriondo Bengoa
Abstract:
A new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuoustone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different levels of importance from which the bit stream will be generated. The subcomponents of each level of importance are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several enhance levels.
Keywords: Image compression, wavelet transform, highlyscalable, reversible transform, embedded, subcomponents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14137653 Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy
Authors: Edikan E. Akpanibah, Okwigbedi Oghen’Oro
Abstract:
In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.
Keywords: DC pension fund, Hamilton-Jacobi-Bellman, optimal investment strategies, power transformation method, stochastic, voluntary contribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8327652 Encryption Image via Mutual Singular Value Decomposition
Authors: Adil Al-Rammahi
Abstract:
Image or document encryption is needed through egovernment data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.
Keywords: Image cryptography, Singular values decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20867651 Outbound Tourism in Developed Countries: Analysis of the Trends, Behavior and the Transformation of the Moroccan Demand for International Travels
Authors: M. Boukhrouk, R. Ed-Dali
Abstract:
Outbound tourism in Morocco, as in the majority of developing countries, reveals some of the aspects of inequality between the north and the south. Considered by some researchers as one of the facets of the development crisis, access to tourism and especially international tourism is a chance for a small minority with financial means, while the vast portions of the population dream rather of immigrating to a developed country for the sake of improving their standard of living. The right to travel is also limited by visa requirements, procedures in host countries, security and technical measures and creates discrimination in the practice of tourism. These conditions do not seem to be favorable to the democratization of the practice of international tourism for the populations of the southern countries. This paper is a contribution to the reading of the trends of outbound tourism in developing countries through the example of Morocco. It highlights the different aspects of Moroccan outbound tourism, destinations and the behavior of tourists through an analysis of the offer of a sample of 50 travel agencies. In the same vein, it offers a reading grid of the possibilities offered for the development of outbound tourism and the various existing obstacles to the democratization of international outbound tourism in the southern countries. This reading reveals the transformation in the behavior of Moroccan international tourists as well as the profound changes in Moroccan society, through a model of statistical analysis.
Keywords: Demand, Hajj, Morocco, outbound tourism, tendency, Umrah.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12017650 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.
Keywords: Underground railway, twin tunnels, wave translation and transformation, transfer matrix method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7287649 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery
Authors: Yongquan Zhao, Bo Huang
Abstract:
Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.Keywords: Hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12357648 Reversible, Embedded and Highly Scalable Image Compression System
Authors: Federico Pérez González, Iñaki Goirizelaia Ordorika, Pedro Iriondo Bengoa
Abstract:
In this work a new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuous-tone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different importance levels from which the bit stream will be generated. The subcomponents of each importance level are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several improvement levels.Keywords: Image compression, wavelet transform, highly scalable, reversible transform, embedded, subcomponents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13017647 Comparative Analysis of Diverse Collection of Big Data Analytics Tools
Authors: S. Vidhya, S. Sarumathi, N. Shanthi
Abstract:
Over the past era, there have been a lot of efforts and studies are carried out in growing proficient tools for performing various tasks in big data. Recently big data have gotten a lot of publicity for their good reasons. Due to the large and complex collection of datasets it is difficult to process on traditional data processing applications. This concern turns to be further mandatory for producing various tools in big data. Moreover, the main aim of big data analytics is to utilize the advanced analytic techniques besides very huge, different datasets which contain diverse sizes from terabytes to zettabytes and diverse types such as structured or unstructured and batch or streaming. Big data is useful for data sets where their size or type is away from the capability of traditional relational databases for capturing, managing and processing the data with low-latency. Thus the out coming challenges tend to the occurrence of powerful big data tools. In this survey, a various collection of big data tools are illustrated and also compared with the salient features.
Keywords: Big data, Big data analytics, Business analytics, Data analysis, Data visualization, Data discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37757646 FPGA Implementation of the “PYRAMIDS“ Block Cipher
Authors: A. AlKalbany, H. Al hassan, M. Saeb
Abstract:
The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.
Keywords: FPGA, VHDL, micro-architecture, encryption, cryptography, algorithm, data communication security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17047645 On the Comparison of Several Goodness of Fit tests under Simple Random Sampling and Ranked Set Sampling
Authors: F. Azna A. Shahabuddin, Kamarulzaman Ibrahim, Abdul Aziz Jemain
Abstract:
Many works have been carried out to compare the efficiency of several goodness of fit procedures for identifying whether or not a particular distribution could adequately explain a data set. In this paper a study is conducted to investigate the power of several goodness of fit tests such as Kolmogorov Smirnov (KS), Anderson-Darling(AD), Cramer- von- Mises (CV) and a proposed modification of Kolmogorov-Smirnov goodness of fit test which incorporates a variance stabilizing transformation (FKS). The performances of these selected tests are studied under simple random sampling (SRS) and Ranked Set Sampling (RSS). This study shows that, in general, the Anderson-Darling (AD) test performs better than other GOF tests. However, there are some cases where the proposed test can perform as equally good as the AD test.Keywords: Empirical distribution function, goodness-of-fit, order statistics, ranked set sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17167644 An Insurer’s Investment Model with Reinsurance Strategy under the Modified Constant Elasticity of Variance Process
Authors: K. N. C. Njoku, Chinwendu Best Eleje, Christian Chukwuemeka Nwandu
Abstract:
One of the problems facing most insurance companies is how best the burden of paying claims to its policy holders can be managed whenever need arises. Hence there is need for the insurer to buy a reinsurance contract in order to reduce risk which will enable the insurer to share the financial burden with the reinsurer. In this paper, the insurer’s and reinsurer’s strategy is investigated under the modified constant elasticity of variance (M-CEV) process and proportional administrative charges. The insurer considered investment in one risky asset and one risk free asset where the risky asset is modeled based on the M-CEV process which is an extension of constant elasticity of variance (CEV) process. Next, a nonlinear partial differential equation in the form of Hamilton Jacobi Bellman equation is obtained by dynamic programming approach. Using power transformation technique and variable change, the explicit solutions of the optimal investment strategy and optimal reinsurance strategy are obtained. Finally, some numerical simulations of some sensitive parameters were obtained and discussed in details where we observed that the modification factor only affects the optimal investment strategy and not the reinsurance strategy for an insurer with exponential utility function.
Keywords: Reinsurance strategy, Hamilton Jacobi Bellman equation, power transformation, M-CEV process, exponential utility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3297643 Medical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy
Authors: Shaoyan Sun, Liwei Zhang, Chonghui Guo
Abstract:
As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori knowledge of the expected joint intensity distribution estimated from pre-aligned training images. The goal of the registration is to find the optimal transformation such that the distance between the observed joint intensity distribution obtained from the testing image pair and the expected joint intensity distribution obtained from the corresponding training image pair is minimized. The distance is measured using the divergence measure based on Tsallis entropy. Experimental results show that, compared with the widely-used Shannon mutual information as well as Tsallis mutual information, the proposed method is computationally more efficient without sacrificing registration accuracy.
Keywords: Multimodality images, image registration, Shannonentropy, Tsallis entropy, mutual information, Powell optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16357642 Enlightening Malaysia's Energy Policies and Strategies for Modernization and Sustainable Development
Authors: Hussain Ali Bekhet, Nor Salwati Othman
Abstract:
Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.Keywords: Energy policies, energy efficiency, renewable energy, green building, Malaysia, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26637641 Multi-labeled Data Expressed by a Set of Labels
Authors: Tetsuya Furukawa, Masahiro Kuzunishi
Abstract:
Collected data must be organized to be utilized efficiently, and hierarchical classification of data is efficient approach to organize data. When data is classified to multiple categories or annotated with a set of labels, users request multi-labeled data by giving a set of labels. There are several interpretations of the data expressed by a set of labels. This paper discusses which data is expressed by a set of labels by introducing orders for sets of labels and shows that there are four types of orders, which are characterized by whether the labels of expressed data includes every label of the given set of labels within the range of the set. Desirable properties of the orders, data is also expressed by the higher set of labels and different sets of labels express different data, are discussed for the orders.
Keywords: Classification Hierarchies, Multi-labeled Data, Multiple Classificaiton, Orders of Sets of Labels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13047640 Digital Sites- Performative Views
Authors: Gavin Perin, Linda Matthews
Abstract:
Webcam systems now function as the new privileged vantage points from which to view the city. This transformation of CCTV technology from surveillance to promotional tool is significant because its'scopic regime' presents, back to the public, a new virtual 'site' that sits alongside its real-time counterpart. Significantly, thisraw 'image' data can, in fact,be co-optedand processed so as to disrupt their original purpose. This paper will demonstrate this disruptive capacity through an architectural project. It will reveal how the adaption the webcam image offers a technical springboard by which to initiate alternate urban form making decisions and subvert the disciplinary reliance on the 'flat' orthographic plan. In so doing, the paper will show how this 'digital material' exceeds the imagistic function of the image; shiftingit from being a vehicle of signification to a site of affect.Keywords: Surveillance, virtual, scopic, additive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12857639 Generalisation of Kipnis and Shamir Cryptanalysis of the HFE public key cryptosystem
Authors: Omessaad Hamdi, Ammar Bouallegue, Sami Harari
Abstract:
In [4], Kipnis and Shamir have cryptanalised a version of HFE of degree 2. In this paper, we describe the generalization of this attack of HFE of degree more than 2. We are based on Fourier Transformation to acheive partially this attack.Keywords: Public, cryptosystem, cryptanalisis, HFE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13897638 Experimental Investigation on Effect of Different Heat Treatments on Phase Transformation and Superelasticity of NiTi Alloy
Authors: Erfan Asghari Fesaghandis, Reza Ghaffari Adli, Abbas Kianvash, Hossein Aghajani, Homa Homaie
Abstract:
NiTi alloys possess magnificent superelastic, shape memory, high strength and biocompatible properties. For improving mechanical properties, foremost, superelasticity behavior, heat treatment process is carried out. In this paper, two different heat treatment methods were undertaken: (1) solid solution, and (2) aging. The effect of each treatment in a constant time is investigated. Five samples were prepared to study the structure and optimize mechanical properties under different time and temperature. For measuring the upper plateau stress, lower plateau stress and residual strain, tensile test is carried out. The samples were aged at two different temperatures to see difference between aging temperatures. The sample aged at 500 °C has a bigger crystallite size and lower amount of Ni which causes the mentioned sample to possess poor pseudo elasticity behaviour than the other aged sample. The sample aged at 460 °C has shown remarkable superelastic properties. The mentioned sample’s higher plateau is 580 MPa with the lowest residual strain (0.17%) while other samples have possessed higher residual strains. X-ray diffraction was used to investigate the produced phases.
Keywords: Heat treatment, phase transformation, superelasticity, NiTi alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6997637 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data
Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton
Abstract:
The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.
Keywords: Analytics, digitization, industry 4.0, manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7347636 The Comparison of Data Replication in Distributed Systems
Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf
Abstract:
The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.Keywords: data replication, data hiding, consistency, dynamicdata replication strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16357635 Construction of Attitude Reference Benchmark for Test of Star Sensor Based on Precise Timing
Authors: Tingting Lu, Yonghai Wang, Haiyong Wang, Jiaqi Liu
Abstract:
To satisfy the need of outfield tests of star sensors, a method is put forward to construct the reference attitude benchmark. Firstly, its basic principle is introduced; Then, all the separate conversion matrixes are deduced, which include: the conversion matrix responsible for the transformation from the Earth Centered Inertial frame i to the Earth-centered Earth-fixed frame w according to the time of an atomic clock, the conversion matrix from frame w to the geographic frame t, and the matrix from frame t to the platform frame p, so the attitude matrix of the benchmark platform relative to the frame i can be obtained using all the three matrixes as the multiplicative factors; Next, the attitude matrix of the star sensor relative to frame i is got when the mounting matrix from frame p to the star sensor frame s is calibrated, and the reference attitude angles for star sensor outfield tests can be calculated from the transformation from frame i to frame s; Finally, the computer program is finished to solve the reference attitudes, and the error curves are drawn about the three axis attitude angles whose absolute maximum error is just 0.25ÔÇ│. The analysis on each loop and the final simulating results manifest that the method by precise timing to acquire the absolute reference attitude is feasible for star sensor outfield tests.Keywords: Atomic time, attitude determination, coordinate conversion, inertial coordinate system, star sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12007634 Two Different Computing Methods of the Smith Arithmetic Determinant
Authors: Xing-Jian Li, Shen Qu
Abstract:
The Smith arithmetic determinant is investigated in this paper. By using two different methods, we derive the explicit formula for the Smith arithmetic determinant.
Keywords: Elementary row transformation, Euler function, Matrix decomposition, Smith arithmetic determinant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26387633 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.
Keywords: Clustering, data mining, DBSCAN, k-means, k-medoids, sensor data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20107632 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.
Keywords: Complementary and alternative medicine, Iridology, iris, feature extraction, classification, disease prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18587631 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.
Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5017630 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.
Keywords: Big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21437629 A Robust Image Watermarking Scheme using Image Moment Normalization
Authors: Latha Parameswaran, K. Anbumani
Abstract:
Multimedia security is an incredibly significant area of concern. A number of papers on robust digital watermarking have been presented, but there are no standards that have been defined so far. Thus multimedia security is still a posing problem. The aim of this paper is to design a robust image-watermarking scheme, which can withstand a different set of attacks. The proposed scheme provides a robust solution integrating image moment normalization, content dependent watermark and discrete wavelet transformation. Moment normalization is useful to recover the watermark even in case of geometrical attacks. Content dependent watermarks are a powerful means of authentication as the data is watermarked with its own features. Discrete wavelet transforms have been used as they describe image features in a better manner. The proposed scheme finds its place in validating identification cards and financial instruments.Keywords: Watermarking, moments, wavelets, content-based, benchmarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15467628 Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops
Authors: Brandtner Patrick, Staberhofer Franz
Abstract:
Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.
Keywords: Digital transformation, supply chain management, digital supply chain, value networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7577627 Multiwavelet and Biological Signal Processing
Authors: Morteza Moazami-Goudarzi, Ali Taheri, Mohammad Pooyan, Reza Mahboobi
Abstract:
In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals and then, selecting it for using with SPIHT codec. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MIT-BIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the Cardinal Balanced Multiwavelet (cardbal2) by the means of identity (Id) prefiltering method to be the best effective transformation. After finding the most efficient multiwavelet, we apply SPIHT coding algorithm on the transformed signal by this multiwavelet.
Keywords: ECG compression, Prefiltering, Cardinal Balanced Multiwavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18517626 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27917625 New Analysis Methods on Strict Avalanche Criterion of S-Boxes
Authors: Phyu Phyu Mar, Khin Maung Latt
Abstract:
S-boxes (Substitution boxes) are keystones of modern symmetric cryptosystems (block ciphers, as well as stream ciphers). S-boxes bring nonlinearity to cryptosystems and strengthen their cryptographic security. They are used for confusion in data security An S-box satisfies the strict avalanche criterion (SAC), if and only if for any single input bit of the S-box, the inversion of it changes each output bit with probability one half. If a function (cryptographic transformation) is complete, then each output bit depends on all of the input bits. Thus, if it were possible to find the simplest Boolean expression for each output bit in terms of the input bits, each of these expressions would have to contain all of the input bits if the function is complete. From some important properties of S-box, the most interesting property SAC (Strict Avalanche Criterion) is presented and to analyze this property three analysis methods are proposed.Keywords: S-boxes, cryptosystems, strict avalanche criterion, function, analysis methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3921