Search results for: Computational Complexity.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1779

Search results for: Computational Complexity.

1569 MONARC: A Case Study on Simulation Analysis for LHC Activities

Authors: Ciprian Dobre

Abstract:

The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.

Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
1568 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.

Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
1567 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
1566 Application of Hardware Efficient CIC Compensation Filter in Narrow Band Filtering

Authors: Vishal Awasthi, Krishna Raj

Abstract:

In many communication and signal processing systems, it is highly desirable to implement an efficient narrow-band filter that decimate or interpolate the incoming signals. This paper presents hardware efficient compensated CIC filter over a narrow band frequency that increases the speed of down sampling by using multiplierless decimation filters with polyphase FIR filter structure. The proposed work analyzed the performance of compensated CIC filter on the bases of the improvement of frequency response with reduced hardware complexity in terms of no. of adders and multipliers and produces the filtered results without any alterations. CIC compensator filter demonstrated that by using compensation with CIC filter improve the frequency response in passed of interest 26.57% with the reduction in hardware complexity 12.25% multiplications per input sample (MPIS) and 23.4% additions per input sample (APIS) w.r.t. FIR filter respectively.

Keywords: Multirate filtering, Narrow-band Signaling, Compensation Theory, CIC filter, Decimation, Compensation filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
1565 Learning Monte Carlo Data for Circuit Path Length

Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad

Abstract:

This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.

Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1564 A Reconfigurable Distributed Multiagent System Optimized for Scalability

Authors: Summiya Moheuddin, Afzel Noore, Muhammad Choudhry

Abstract:

This paper proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topologyindependent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead.

Keywords: Multiagent system, scalable design, spectral clustering, reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
1563 Speech Coding and Recognition

Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha

Abstract:

This paper investigates the performance of a speech recognizer in an interactive voice response system for various coded speech signals, coded by using a vector quantization technique namely Multi Switched Split Vector Quantization Technique. The process of recognizing the coded output can be used in Voice banking application. The recognition technique used for the recognition of the coded speech signals is the Hidden Markov Model technique. The spectral distortion performance, computational complexity, and memory requirements of Multi Switched Split Vector Quantization Technique and the performance of the speech recognizer at various bit rates have been computed. From results it is found that the speech recognizer is showing better performance at 24 bits/frame and it is found that the percentage of recognition is being varied from 100% to 93.33% for various bit rates.

Keywords: Linear predictive coding, Speech Recognition, Voice banking, Multi Switched Split Vector Quantization, Hidden Markov Model, Linear Predictive Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1562 Design, Development by Functional Analysis in UML and Static Test of a Multimedia Voice and Video Communication Platform on IP for a Use Adapted to the Context of Local Businesses in Lubumbashi

Authors: Blaise Fyama, Elie Museng, Grace Mukoma

Abstract:

In this article we present a java implementation of video telephony using the SIP protocol (Session Initiation Protocol). After a functional analysis of the SIP protocol, we relied on the work of Italian researchers of University of Parma-Italy to acquire adequate libraries for the development of our own communication tool. In order to optimize the code and improve the prototype, we used, in an incremental approach, test techniques based on a static analysis based on the evaluation of the complexity of the software with the application of metrics and the number cyclomatic of Mccabe. The objective is to promote the emergence of local start-ups producing IP video in a well understood local context. We have arrived at the creation of a video telephony tool whose code is optimized.

Keywords: Static analysis, coding, complexity, mccabe metrics, Sip, uml.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378
1561 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: Decentralized, optimal control, output, singular perturb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1560 A Descent-projection Method for Solving Monotone Structured Variational Inequalities

Authors: Min Sun, Zhenyu Liu

Abstract:

In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem-s data, the method is proved to converges globally. Some preliminary computational results are also reported to illustrate the efficiency of the method.

Keywords: variational inequalities, monotone function, global convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
1559 Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow

Authors: Ali Shatnawi

Abstract:

Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.

Keywords: Data flow graph, Iteration period bound, Rateoptimalscheduling, Recursive DSP algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
1558 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: Natural surfactant, crude oil, rheology, CFD, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1557 RFU Based Computational Unit Design For Reconfigurable Processors

Authors: M. Aqeel Iqbal

Abstract:

Fully customized hardware based technology provides high performance and low power consumption by specializing the tasks in hardware but lacks design flexibility since any kind of changes require re-design and re-fabrication. Software based solutions operate with software instructions due to which a great flexibility is achieved from the easy development and maintenance of the software code. But this execution of instructions introduces a high overhead in performance and area consumption. In past few decades the reconfigurable computing domain has been introduced which overcomes the traditional trades-off between flexibility and performance and is able to achieve high performance while maintaining a good flexibility. The dramatic gains in terms of chip performance and design flexibility achieved through the reconfigurable computing systems are greatly dependent on the design of their computational units being integrated with reconfigurable logic resources. The computational unit of any reconfigurable system plays vital role in defining its strength. In this research paper an RFU based computational unit design has been presented using the tightly coupled, multi-threaded reconfigurable cores. The proposed design has been simulated for VLIW based architectures and a high gain in performance has been observed as compared to the conventional computing systems.

Keywords: Configuration Stream, Configuration overhead, Configuration Controller, Reconfigurable devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1556 A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals

Authors: V. Prapulla, A. Mitra, R. Bhattacharjee, S. Nandi

Abstract:

We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.

Keywords: Adaptive decision feedback equalizer, Fractionally spaced equalizer, π/4 DQPSK signal, Digital signal processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5736
1555 A Comparison of Different Soft Computing Models for Credit Scoring

Authors: Nnamdi I. Nwulu, Shola G. Oroja

Abstract:

It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.

Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
1554 A New Extended Group Mutual Exclusion Algorithm with Low Message Complexity in Distributed Systems

Authors: S. Dehghan, A.M. Rahmani

Abstract:

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. In the group mutual exclusion, multiple processes can enter a critical section simultaneously if they belong to the same group. In the extended group mutual exclusion, each process is a member of multiple groups at the same time. As a result, after the process by selecting a group enter critical section, other processes can select the same group with its belonging group and can enter critical section at the moment, so that it avoids their unnecessary blocking. This paper presents a quorum-based distributed algorithm for the extended group mutual exclusion problem. The message complexity of our algorithm is O(4Q ) in the best case and O(5Q) in the worst case, where Q is a quorum size.

Keywords: Group Mutual Exclusion (GME), Extended GME, Distributed systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
1553 A Computational Fluid Dynamic Model of Human Sniffing

Authors: M.V. Shyla, K.B. Naidu

Abstract:

The objective of this paper is to develop a computational model of human nasal cavity from computed tomography (CT) scans using MIMICS software. Computational fluid dynamic techniques were employed to understand nasal airflow. Gambit and Fluent software was used to perform CFD simulation. Velocity profiles, iteration plots, pressure distribution, streamline and pathline patterns for steady, laminar airflow inside the human nasal cavity of healthy and also infected persons are presented in detail. The implications for olfaction are visualized. Results are validated with the available numerical and experimental data. The graphs reveal that airflow varies with different anatomical nasal structures and only fraction of the inspired air reaches the olfactory region. The Deviations in the results suggest that the treatment of infected volunteers will improve the olfactory function.

Keywords: CFD techniques, Finite Volume Method, Fluid dynamic sniffing, Human nasal cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
1552 A Universal Model for Content-Based Image Retrieval

Authors: S. Nandagopalan, Dr. B. S. Adiga, N. Deepak

Abstract:

In this paper a novel approach for generalized image retrieval based on semantic contents is presented. A combination of three feature extraction methods namely color, texture, and edge histogram descriptor. There is a provision to add new features in future for better retrieval efficiency. Any combination of these methods, which is more appropriate for the application, can be used for retrieval. This is provided through User Interface (UI) in the form of relevance feedback. The image properties analyzed in this work are by using computer vision and image processing algorithms. For color the histogram of images are computed, for texture cooccurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD) that is found. For retrieval of images, a novel idea is developed based on greedy strategy to reduce the computational complexity. The entire system was developed using AForge.Imaging (an open source product), MATLAB .NET Builder, C#, and Oracle 10g. The system was tested with Coral Image database containing 1000 natural images and achieved better results.

Keywords: Content Based Image Retrieval (CBIR), Cooccurrencematrix, Feature vector, Edge Histogram Descriptor(EHD), Greedy strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
1551 An Investigation on Efficient Spreading Codes for Transmitter Based Techniques to Mitigate MAI and ISI in TDD/CDMA Downlink

Authors: Abhijit Mitra, C. Ardil

Abstract:

We investigate efficient spreading codes for transmitter based techniques of code division multiple access (CDMA) systems. The channel is considered to be known at the transmitter which is usual in a time division duplex (TDD) system where the channel is assumed to be the same on uplink and downlink. For such a TDD/CDMA system, both bitwise and blockwise multiuser transmission schemes are taken up where complexity is transferred to the transmitter side so that the receiver has minimum complexity. Different spreading codes are considered at the transmitter to spread the signal efficiently over the entire spectrum. The bit error rate (BER) curves portray the efficiency of the codes in presence of multiple access interference (MAI) as well as inter symbol interference (ISI).

Keywords: Code division multiple access, time division duplex, transmitter technique, precoding, pre-rake, rake, spreading code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
1550 Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler

Authors: Teewin Plangsrinont, Wasawat Nakkiew

Abstract:

In this study, Computational Fluid Dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2%.

Keywords: Computational fluid dynamics, tangentially fired boiler, thermal power plant, water soot blower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
1549 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: Computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1548 The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional Computational Fluid Dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: Savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
1547 A Computational Model for Resolving Pronominal Anaphora in Turkish Using Hobbs- Naïve Algorithm

Authors: Pınar Tüfekçi, Yılmaz Kılıçaslan

Abstract:

In this paper we present a computational model for pronominal anaphora resolution in Turkish. The model is based on Hobbs’ Naїve Algorithm [4, 5, 6], which exploits only the surface syntax of sentences in a given text.

Keywords: Anaphora Resolution, Pronoun Resolution, Syntax based Algorithms, Naїve Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
1546 A Global Framework to Manage the Digital Transformation Process in the Post-COVID Era

Authors: Driss Kettani

Abstract:

In this paper, we shed light on the “Digital Divide 2.0,” which we see as COVID-19’s version of the digital divide. We believe that “fighting” against digital divide 2.0 necessitates for a country to be seriously advanced in the global digital transformation that is, naturally, a complex, delicate, costly and long-term process. We build an argument supporting our assumption and, from there, we present the foundations of a computational framework to guide and streamline digital transformation at all levels.

Keywords: Digital divide 2.0, digital transformation, ICTs for development, computational outcomes assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
1545 NFκB Pathway Modeling for Optimal Drug Combination Therapy on Multiple Myeloma

Authors: Huiming Peng, Jianguo Wen, Hongwei Li, Jeff Chang, Xiaobo Zhou

Abstract:

NFκB activation plays a crucial role in anti-apoptotic responses in response to the apoptotic signaling during tumor necrosis factor (TNFa) stimulation in Multiple Myeloma (MM). Although several drugs have been found effective for the treatment of MM by mainly inhibiting NFκB pathway, there are no any quantitative or qualitative results of comparison assessment on inhibition effect between different single drugs or drug combinations. Computational modeling is becoming increasingly indispensable for applied biological research mainly because it can provide strong quantitative predicting power. In this study, a novel computational pathway modeling approach is employed to comparably assess the inhibition effects of specific single drugs and drug combinations on the NFκB pathway in MM, especially the prediction of synergistic drug combinations.

Keywords: Computational modeling, drug combination, inhibition effect, multiple myeloma, NFkB pathway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046
1544 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique

Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru

Abstract:

The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1543 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
1542 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
1541 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations

Authors: Mohammed Bilal

Abstract:

The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.

Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281
1540 Empirical Exploration of Correlations between Software Design Measures: A Replication Study

Authors: Jehad Al Dallal

Abstract:

Software engineers apply different measures to quantify the quality of software design. These measures consider artifacts developed at low or high level software design phases. The results are used to point to design weaknesses and to indicate design points that have to be restructured. Understanding the relationship among the quality measures and among the design quality aspects considered by these measures is important to interpreting the impact of a measure for a quality aspect on other potentially related aspects. In addition, exploring the relationship between quality measures helps to explain the impact of different quality measures on external quality aspects, such as reliability and maintainability. In this paper, we report a replication study that empirically explores the correlation between six well known and commonly applied design quality measures. These measures consider several quality aspects, including complexity, cohesion, coupling, and inheritance. The results indicate that inheritance measures are weakly correlated to other measures, whereas complexity, coupling, and cohesion measures are mostly strongly correlated.  

Keywords: Quality attribute, quality measure, software design quality, spearman correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809