Search results for: normal and log-normal distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2606

Search results for: normal and log-normal distribution

326 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: Fragility curve, sensitivity analysis, reliability index, RC frames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
325 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
324 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac

Abstract:

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated the reality. However, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), Pre-Impregnation, Laminating Method, Interlaminar Shear Strength (ILSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
323 An Anthropometric Index Capable of Differentiating Morbid Obesity from Obesity and Metabolic Syndrome in Children

Authors: Mustafa M. Donma

Abstract:

Circumference measurements may give meaningful information about the varying stages of obesity. Some formulas may be derived from a number of body circumference measurements to estimate body fat. Waist (WC), hip (HC) and neck (NC) circumferences are currently the most frequently used measurements. The aim of this study was to develop a formula derived from these three anthropometric measurements for the differential diagnosis of morbid obesity with and without metabolic syndrome (MetS), MOMetS+ and MOMetS-, respectively. 187 children were recruited from the pediatrics outpatient clinic of Tekirdag Namik Kemal University, Faculty of Medicine. Signed informed consent forms were taken from the participants. The study was carried out according to the Helsinki Declaration. The study protocol was approved by the institutional non-interventional ethics committee of Tekirdag Namik Kemal University Medical Faculty. The study population was divided into four groups as normal-body mass index (N-BMI) (n = 35), obese (OB) (n = 44), morbid obese (MO) (n = 75) and MetS (n = 33). Age- and gender-adjusted BMI percentile values were used for the classification of groups. The children in MetS group were selected based upon the nature of the MetS components described as MetS criteria. Anthropometric measurements, laboratory analysis and statistical evaluation confined to study population were performed. BMI values were calculated. A circumference index, advanced Donma circumference index (ADCI) was presented as WC*HC/NC. The statistical significance degree was chosen as p < 0.05. BMI values were 17.7 ± 2.8, 24.5 ± 3.3, 28.8 ± 5.7, 31.4 ± 8.0 kg/m2, for N-BMI, OB, MO, MetS groups (p = 0.001), respectively. An increasing trend from N-BMI to MetS was observed. However, the increase in MetS group compared to MO group was not significant. For the new index, significant differences were obtained between N-BMI and OB, MO, MetS groups (p = 0.001). A significant difference between MO and MetS groups was detected (p = 0.043). A significant correlation was found between BMI and ADCI. In conclusion, in spite of the strong correlation between BMI and ADCI values obtained when all groups were considered, ADCI, but not BMI, was the index, which was capable of differentiating cases with morbid obesity from cases with morbid obesity and MetS.

Keywords: Anthropometry, body mass index, childhood obesity, body circumference, metabolic syndrome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
322 Hydrological Characterization of a Watershed for Streamflow Prediction

Authors: Oseni Taiwo Amoo, Bloodless Dzwairo

Abstract:

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Keywords: Hydrological characteristic, land and climate, runoff discharge, streamflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
321 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 0m) and structured US–Y catalyst film (Si/Al = 8, thickness 230m) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-onalloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y, Zeolite ZSM-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
320 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
319 Electoral Mathematics and Asymmetrical Treatment to Political Parties: The Mexican Case

Authors: Verónica Arredondo, Miguel Martínez-Panero, Teresa Peña, Victoriano Ramírez

Abstract:

The Mexican Chamber of Deputies is composed of 500 representatives: 300 of them elected by relative majority and another 200 ones elected through proportional representation in five electoral clusters (constituencies) with 40 representatives each. In this mixed-member electoral system, the seats distribution of proportional representation is not independent of the election by relative majority, as it attempts to correct representation imbalances produced in single-member districts. This two-fold structure has been maintained in the successive electoral reforms carried out along the last three decades (eight from 1986 to 2014). In all of them, the election process of 200 seats becomes complex: Formulas in the Law are difficult to understand and to be interpreted. This paper analyzes the Mexican electoral system after the electoral reform of 2014, which was applied for the first time in 2015. The research focuses on contradictions and issues of applicability, in particular situations where seats allocation is affected by ambiguity in the law and where asymmetrical treatment of political parties arises. Due to these facts, a proposal of electoral reform will be presented. It is intended to be simpler, clearer, and more enduring than the current system. Furthermore, this model is more suitable for producing electoral outcomes free of contradictions and paradoxes. This approach would allow a fair treatment of political parties and as a result an improved opportunity to exercise democracy.

Keywords: Apportionment paradoxes, biproportional representation, electoral mathematics, electoral reform, Mexican electoral system, proportional representation, political asymmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
318 Space-Time Variation in Rainfall and Runoff: Upper Betwa Catchment

Authors: Ritu Ahlawat

Abstract:

Among all geo-hydrological relationships, rainfallrunoff relationship is of utmost importance in any hydrological investigation and water resource planning. Spatial variation, lag time involved in obtaining areal estimates for the basin as a whole can affect the parameterization in design stage as well as in planning stage. In conventional hydrological processing of data, spatial aspect is either ignored or interpolated at sub-basin level. Temporal variation when analysed for different stages can provide clues for its spatial effectiveness. The interplay of space-time variation at pixel level can provide better understanding of basin parameters. Sustenance of design structures for different return periods and their spatial auto-correlations should be studied at different geographical scales for better management and planning of water resources. In order to understand the relative effect of spatio-temporal variation in hydrological data network, a detailed geo-hydrological analysis of Betwa river catchment falling in Lower Yamuna Basin is presented in this paper. Moreover, the exact estimates about the availability of water in the Betwa river catchment, especially in the wake of recent Betwa-Ken linkage project, need thorough scientific investigation for better planning. Therefore, an attempt in this direction is made here to analyse the existing hydrological and meteorological data with the help of SPSS, GIS and MS-EXCEL software. A comparison of spatial and temporal correlations at subcatchment level in case of upper Betwa reaches has been made to demonstrate the representativeness of rain gauges. First, flows at different locations are used to derive correlation and regression coefficients. Then, long-term normal water yield estimates based on pixel-wise regression coefficients of rainfall-runoff relationship have been mapped. The areal values obtained from these maps can definitely improve upon estimates based on point-based extrapolations or areal interpolations.

Keywords: Catchment's runoff estimates, influence area regional regression coefficients, runoff yield series,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
317 Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems

Authors: Miroslav Byrtus

Abstract:

Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.

Keywords: Vibro-impact system, rotating system, gear drive, modal synthesis method, numerical continuation method, periodic solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
316 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
315 Wound Healing Effect of Ocimum sanctum Leaves Extract in Diabetic Rats

Authors: Manish Kumar Gautam, Raj Kumar Goel

Abstract:

Delayed wound healing in diabetes is primarily associated with hyperglycemia, over-expression of inflammatory marker, oxidative stress and delayed collagen synthesis. This unmanaged wound is producing high economic burden on the society. Thus research is required to develop new and effective treatment strategies to deal with this emerging issue. Our present study incorporates the evaluation of wound healing effects of 50% ethanol extract of Ocimum sanctum (OSE) in streptozotocin (45mg/kg)-induced diabetic rats with concurrent wound ulcer. The animals showing diabetes (Blood glucose level >140 and <250 mg/dL) will be selected for wound healing study using standard dead space wound model. Wounds were created by implanting two polypropylene tubes (0.5 x 2.5 cm2 each), one on either side in the lumbar region on the dorsal surface of each rat. On the 10th postwounding day, the animals were sacrificed and granulation tissue formed on the implanted tubes was carefully dissected out and study the status of antioxidants (Superoxide dismutase, SOD and Glutathione, GSH) free radicals (Lipid peroxidation, LPO and nitric oxide, NO) acute inflammatory marker (myeloperoxidase, MPO) connective tissue determinants, hydroxyproline, hexosamine and hexuronic acid, which play a major role in wound healing and diabetes. Besides the anti-diabetic parameters (estimation of serum blood glucose, triglycerides and total cholesterol), the above parameters for wound healing were studied both in normal, untreated and OSE treated diabetic rats. The effects of extract on above parameters will be compared with known standard antioxidant (Vitamin E) and anti-diabetic (Glybenclamide) drugs. OSE 400 mg/kg substantiated by significantly decreased serum blood glucose, triglycerides and total cholesterol. OSE also decrease granulation tissue free radicals (LPO, 58.1% and NO, 52.7%) and myeloperoxidase (MPO, 63.3%), and enhanced antioxidants (GSH, 116.4% and SOD, 201.1%)

Keywords: Wound healing, diabetes, Ocimum sanctum, Antioxidant, Free radical, Myeloperoxidase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160
314 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir

Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder

Abstract:

22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.

Keywords: Catchment management, drinking water reservoir, multivariate curve resolution alternating least squares, thermal stratification, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
313 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
312 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application

Authors: Bakari M. M. Mwinyiwiwa

Abstract:

Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.

Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4311
311 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: Flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
310 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
309 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method

Authors: W. Swiderski

Abstract:

In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.

Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
308 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
307 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, Pure Al, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
306 A Model for Optimal Design of Mixed Renewable Warranty Policy for Non-Repairable Weibull Life Products under Conflict between Customer and Manufacturer Interests

Authors: Saleem Z. Ramadan

Abstract:

A model is presented to find the optimal design of the mixed renewable warranty policy for non-repairable Weibull life products. The optimal design considers the conflict of interests between the customer and the manufacturer: the customer interests are longer full rebate coverage period and longer total warranty coverage period, the manufacturer interests are lower warranty cost and lower risk. The design factors are full rebate and total warranty coverage periods. Results showed that mixed policy is better than full rebate policy in terms of risk and total warranty coverage period in all of the three bathtub regions. In addition, results showed that linear policy is better than mixed policy in infant mortality and constant failure regions while the mixed policy is better than linear policy in ageing region of the model. Furthermore, the results showed that using burn-in period for infant mortality products reduces warranty cost and risk.

Keywords: Reliability, Mixed warranty policy, Optimization, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
305 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade

Authors: Yanqun Li, Hong Geng

Abstract:

The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.

Keywords: Social relations, social support networks, industrial division, capital allocation, public space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
304 Identifying Neighborhoods at Potential Risk of Food Insecurity in Rural British Columbia

Authors: Amirmohsen Behjat, Aleck Ostry, Christina Miewald, Bernie Pauly

Abstract:

Substantial research has indicated that socioeconomic and demographic characteristics’ of neighborhoods are strong determinants of food security. The aim of this study was to develop a Food Insecurity Neighborhood Index (FINI) based on the associated socioeconomic and demographic variables to identify the areas at potential risk of food insecurity in rural British Columbia (BC). Principle Component Analysis (PCA) technique was used to calculate the FINI for each rural Dissemination Area (DA) using the food security determinant variables from Canadian Census data. Using ArcGIS, the neighborhoods with the top quartile FINI values were classified as food insecure. The results of this study indicated that the most food insecure neighborhood with the highest FINI value of 99.1 was in the Bulkley-Nechako (central BC) area whereas the lowest FINI with the value of 2.97 was for a rural neighborhood in the Cowichan Valley area. In total, 98.049 (19%) of the rural population of British Columbians reside in high food insecure areas. Moreover, the distribution of food insecure neighborhoods was found to be strongly dependent on the degree of rurality in BC. In conclusion, the cluster of food insecure neighbourhoods was more pronounced in Central Coast, Mount Wadington, Peace River, Kootenay Boundary, and the Alberni-Clayoqout Regional Districts.

Keywords: Neighbourhood food insecurity index, socioeconomic and demographic determinants, principal component analysis, Canada Census, ArcGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
303 Higher Plants Ability to Assimilate Explosives

Authors: G. Khatisashvili, M. Gordeziani, G. Adamia, E. Kvesitadze, T. Sadunishvili, G. Kvesitadze

Abstract:

The ability of agricultural and decorative plants to absorb and detoxify TNT and RDX has been studied. All tested 8 plants, grown hydroponically, were able to absorb these explosives from water solutions: Alfalfa > Soybean > Chickpea> Chikling vetch >Ryegrass > Mung bean> China bean > Maize. Differently from TNT, RDX did not exhibit negative influence on seed germination and plant growth. Moreover, some plants, exposed to RDX containing solution were increased in their biomass by 20%. Study of the fate of absorbed [1-14ðí]-TNT revealed the label distribution in low and high-molecular mass compounds, both in roots and above ground parts of plants, prevailing in the later. Content of 14ðí in lowmolecular compounds in plant roots are much higher than in above ground parts. On the contrary, high-molecular compounds are more intensively labeled in aboveground parts of soybean. Most part (up to 70%) of metabolites of TNT, formed either by enzymatic reduction or oxidation, is found in high molecular insoluble conjugates. Activation of enzymes, responsible for reduction, oxidation and conjugation of TNT, such as nitroreductase, peroxidase, phenoloxidase and glutathione S-transferase has been demonstrated. Among these enzymes, only nitroreductase was shown to be induced in alfalfa, exposed to RDX. The increase in malate dehydrogenase activities in plants, exposed to both explosives, indicates intensification of Tricarboxylic Acid Cycle, that generates reduced equivalents of NAD(P)H, necessary for functioning of the nitroreductase. The hypothetic scheme of TNT metabolism in plants is proposed.

Keywords: Higher plants, TNT, RDX, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
302 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: Butterfly valve, fluid-structure interaction, automatic CFD analysis, flow coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
301 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: Daily probability model, monsoon seasons, regions, storm events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
300 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
299 Modeling Spatial Distributions of Point and Nonpoint Source Pollution Loadings in the Great Lakes Watersheds

Authors: Chansheng He, Carlo DeMarchi

Abstract:

A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal distributions of material transport in the Great Lakes Watersheds of the U.S. Multiple databases of meteorology, land use, topography, hydrography, soils, agricultural statistics, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal manure production was computed from tabulations of animals by zip code area for the census years of 1987, 1992, 1997, and 2002. Relative chemical loadings for agricultural land use were calculated from fertilizer and pesticide estimates by crop for the same periods. Comparison of these estimates to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors to the total nutrient loads in the study watersheds, with nonpoint sources being the largest contributor, particularly in the rural watersheds. These estimates are used as the input to the distributed water quality model for simulating pollutant transport through surface and subsurface processes to Great Lakes waters. Visualization and GIS interfaces are developed to visualize the spatial and temporal distribution of the pollutant transport in support of water management programs.

Keywords: Distributed Large Basin Runoff Model, Great LakesWatersheds, nonpoint source pollution, and point sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
298 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: Audit fee, heteroscedasticity, Lagrange multiplier test, periodicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
297 Nanostructure of Gamma-Alumina Prepared by a Modified Sol-Gel Technique

Authors: Débora N. Zambrano, Marina O. Gosatti, Leandro M. Dufou, Daniel A. Serrano, M. Mónica Guraya, Soledad Perez-Catán

Abstract:

Nanoporous g-Al2O3 samples were synthesized via a sol-gel technique, introducing changes in the Yoldas´ method. The aim of the work was to achieve an effective control of the nanostructure properties and morphology of the final g-Al2O3. The influence of the reagent temperature during the hydrolysis was evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC and room temperature. Sol-gel transitions were performed at 120 ºC and room temperature. All g-Al2O3 samples were characterized by X-ray diffraction, nitrogen adsorption and thermal analysis. Our results showed that temperature of both water and alkoxide has not much influence on the nanostructure of the final g-Al2O3, thus giving a structure very similar to that of samples obtained by the reference method as long as the reaction temperature above 75 ºC is reached soon enough. XRD characterization showed diffraction patterns corresponding to g-Al2O3 for all samples. Also BET specific area values (253-280 m2/g) were similar to those obtained by Yoldas’s original method. The temperature of the sol-gel transition does not affect the resulting sample structure, and crystalline boehmite particles were identified in all dried gels. We analyzed the reproducibility of the samples’ structure by preparing different samples under identical conditions; we found that performing the sol-gel transition at 120 ºC favors the production of more reproducible samples and also reduces significantly the time of the sol-gel reaction.

Keywords: Nanostructure alumina, boehmite, sol-gel technique, N2 adsorption/desorption isotherm, pore size distribution, BET area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344