Search results for: air quality classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3999

Search results for: air quality classification

1779 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: Data management, enhancing learning experience, publishing, research higher degree students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1778 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement. On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: Automatic landing, multirotor, nonlinear control, parameters estimation, optical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
1777 Competitiveness of Animation Industry: The Case of Thailand

Authors: T. Niracharapa

Abstract:

The research studied and examined the competitiveness of the animation industry in Thailand. Data were collected based on articles, related reports and websites, news, research, and interviews of key persons from both public and private sectors. The diamond model was used to analyze the study. The major factor driving the Thai animation industry forward includes a quality workforce, their creativity and strong associations. However, discontinuity in government support, infrastructure, marketing, IP creation and financial constraints were factors keeping the Thai animation industry less competitive in the global market.

Keywords: Animation, competitiveness, digital content, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4735
1776 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based On WiMAX Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non_real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
1775 Is E-learning Based On Learning Theories? A Literature Review

Authors: Apostolia Pange, Jenny Pange

Abstract:

E-learning aims to build knowledge and skills in order to enhance the quality of learning. Research has shown that the majority of the e-learning solutions lack in pedagogical background and present some serious deficiencies regarding teaching strategies and content delivery, time and pace management, interface design and preservation of learners- focus. The aim of this review is to approach the design of e-learning solutions with a pedagogical perspective and to present some good practices of e-learning design grounded on the core principles of Learning Theories (LTs).

Keywords: design principles, e-learning, Learning Theories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5229
1774 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: Land suitability, machine learning, random forest, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284
1773 A Six-Year Case Study Evaluating the Stakeholders’ Requirements and Satisfaction in Higher Educational Establishments

Authors: Ioannis I. Αngeli

Abstract:

Worldwide and mainly in the European Union, many standards, regulations, models and systems exists for the evaluation and identification of stakeholders’ requirements of individual universities and higher education (HE) in general. All systems are targeting to measure or evaluate the Universities’ Quality Assurance Systems and the services offered to the recipients of HE, mainly the students. Numerous surveys were conducted in the past either by each university or by organized bodies to identify the students’ satisfaction or to evaluate to what extent these requirements are fulfilled. In this paper, the main results of an ongoing 6-year joint research will be presented very briefly. This research deals with an in depth investigation of student’s satisfaction, students personal requirements, a cup analysis among these two parameters and compares different universities. Through this research an attempt will be made to address four very important questions in higher education establishments (HEE): (1) Are there any common requirements, parameters, good practices or questions that apply to a large number of universities that will assure that students’ requirements are fulfilled? (2) Up to what extent the individual programs of HEE fulfil the requirements of the stakeholders? (3) Are there any similarities on specific programs among European HEE? (4) To what extent the knowledge acquired in a specific course program is utilized or used in a specific country? For the execution of the research an internationally accepted questionnaire(s) was used to evaluate up to what extent the students’ requirements and satisfaction were fulfilled in 2012 and five years later (2017). Samples of students and or universities were taken from many European Universities. The questionnaires used, the sampling method and methodology adopted, as well as the comparison tables and results will be very valuable to any university that is willing to follow the same route and methodology or compare the results with their own HHE. Apart from the unique methodology, valuable results are demonstrated from the four case studies. There is a great difference between the student’s expectations or importance from what they are getting from their universities (in all parameters they are getting less). When there is a crisis or budget cut in HEE there is a direct impact to students. There are many differences on subjects taught in European universities.

Keywords: Quality in higher education, students’ requirements, education standards, student’s survey, stakeholder’s requirements, Mechanical Engineering courses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
1772 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston

Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando

Abstract:

The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.

Keywords: Smart city, social innovation, eHealth, innovation hubs, emerging technologies, equitable healthcare, healthy cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1771 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson

Abstract:

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7085
1770 Preparation of Tempeh Spore Powder by Freeze Drying

Authors: Jaruwan Chutrtong, Tanakwan Bussabun

Abstract:

Study production of tempeh inoculums powder by freeze-drying comparison with dry at 50°C and the sun bask for developing efficient tempeh inoculums for tempeh producing. Rhizopus oligosporus in PDA slant cultures was incubated at 30oC for 3-5 days until spores and mycelium. Preparation spores suspension with sterilized water and then count the number of started spores. Fill spores suspension in Rice flour and soy flour, mixed with water (in the ratio 10: 7), which is steamed and sterilized at 121°C 15min. Incubated at room temperature for 4 days, count number of spores. Then take the progressive infection and full spore dough to dry at 50°C, sun bask, and lyophilize. Grind to powder. Then pack in plastic bags, stored at 5°C. To investigate quality of inoculums which use different methods, tempeh was fermented every 4 weeks for 24 weeks of the experiment. The result found that rice flour is not suitable to use as raw material in the production of powdered spores.  Fungi can growth rarely. Less number of spores and requires more time than soy flour. For drying method, lyophilization is the least possible time. Samples from this method are very hard and very dark and harder to grind than other methods. Drying at 50°C takes longer time than lyophilization but can also set time use for drying. Character of the dry samples is hard solid and brown color, but can be grinded easier. The sun drying takes the longest time, can’t determine the exact time. When the spore powder was used to fermented tempeh immediately, product has similar characters as which use spores that was fresh prepared. The tempeh has normal quality. When spore powder stored at low temperature, tempeh from storage spore in weeks 4, 8 and 12 is still normal. Time spending in production was close to the production of fresh spores. After storage  spores for 16 and 20 weeks, tempeh is still normal but growth and sporulation were take longer time than usual (about 6 hours). At 24 week storage, fungal growth is not good, made tempeh looks inferior to normal color, also smell and texture.

Keywords: Freeze drying, preparation, spore powder, tempeh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3940
1769 Standardization of Ayurvedic Formulation (Marichyadi Vati) Using HPLC and HPTLC Methods

Authors: Pathan Imran Khan, Bhandari Anil, Kumar Amit

Abstract:

The present investigation was aimed to develop methodology for the standardization of Marichyadi Vati and its raw materials. Standardization was carried using systematic Pharmacognostical and physicochemical parameters as per WHO guidelines. The detailed standardization of Marichyadi Vati, it is concluded that there are no major differences prevailed in the quality of marketed products and laboratory samples of Marichyadi Vati. However, market samples showed slightly better amount of Piperine than the laboratory sample by both methods. This is the first attempt to generate complete set of standards required for the Marichyadi Vati.

Keywords: Marichyadi Vati, Standardization, Piperine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
1768 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1767 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.

Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
1766 Intelligent Audio Watermarking using Genetic Algorithm in DWT Domain

Authors: M. Ketcham, S. Vongpradhip

Abstract:

In this paper, an innovative watermarking scheme for audio signal based on genetic algorithms (GA) in the discrete wavelet transforms is proposed. It is robust against watermarking attacks, which are commonly employed in literature. In addition, the watermarked image quality is also considered. We employ GA for the optimal localization and intensity of watermark. The watermark detection process can be performed without using the original audio signal. The experimental results demonstrate that watermark is inaudible and robust to many digital signal processing, such as cropping, low pass filter, additive noise.

Keywords: Intelligent Audio Watermarking, GeneticAlgorithm, DWT Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1765 Region-Based Segmentation of Generic Video Scenes Indexing

Authors: Aree A. Mohammed

Abstract:

In this work we develop an object extraction method and propose efficient algorithms for object motion characterization. The set of proposed tools serves as a basis for development of objectbased functionalities for manipulation of video content. The estimators by different algorithms are compared in terms of quality and performance and tested on real video sequences. The proposed method will be useful for the latest standards of encoding and description of multimedia content – MPEG4 and MPEG7.

Keywords: Object extraction, Video indexing, Segmentation, Optical flow, Motion estimators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
1764 Better Perception of Low Resolution Images Using Wavelet Interpolation Techniques

Authors: Tarun Gulati, Kapil Gupta, Dushyant Gupta

Abstract:

High resolution images are always desired as they contain the more information and they can better represent the original data. So, to convert the low resolution image into high resolution interpolation is done. The quality of such high resolution image depends on the interpolation function and is assessed in terms of sharpness of image. This paper focuses on Wavelet based Interpolation Techniques in which an input image is divided into subbands. Each subband is processed separately and finally combined the processed subbandsto get the super resolution image. 

Keywords: SWT, DWTSR, DWTSWT, DWCWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1763 Eco-Friendly Cleansers Initiation for Eco-Campsite Development in Khao Yai National Park, Thailand

Authors: T. Utarasakul

Abstract:

Environmental impact has occurred at Khao Yai National Park, especially the water pollution by tourist activities as a result of 800,000 tourists visiting annually. To develop an eco-campsite, eco-friendly cleansers were implemented in Lam Ta Khlong and Pha Kluay Mai Campsites for tourists and restaurants. The results indicated the positive effects of environmentally friendly cleansers on water quality in Lam Ta Khlong River and can be implemented in other protected areas to decrease chemical contamination in ecosystems.

Keywords: Sustainable Tourism Management, Eco-campsite, Khao Yai National Park.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1762 Influence of Compactive Efforts on Cement- Bagasse Ash Treatment of Expansive Black Cotton Soil

Authors: Moses, G, Osinubi, K. J.

Abstract:

A laboratory study on the influence of compactive effort on expansive black cotton specimens treated with up to 8% ordinary Portland cement (OPC) admixed with up to 8% bagasse ash (BA) by dry weight of soil and compacted using the energies of the standard Proctor (SP), West African Standard (WAS) or “intermediate” and modified Proctor (MP) were undertaken. The expansive black cotton soil was classified as A-7-6 (16) or CL using the American Association of Highway and Transportation Officials (AASHTO) and Unified Soil Classification System (USCS), respectively. The 7day unconfined compressive strength (UCS) values of the natural soil for SP, WAS and MP compactive efforts are 286, 401 and 515kN/m2 respectively, while peak values of 1019, 1328 and 1420kN/m2 recorded at 8% OPC/ 6% BA, 8% OPC/ 2% BA and 6% OPC/ 4% BA treatments, respectively were less than the UCS value of 1710kN/m2 conventionally used as criterion for adequate cement stabilization. The soaked California bearing ratio (CBR) values of the OPC/BA stabilized soil increased with higher energy level from 2, 4 and 10% for the natural soil to Peak values of 55, 18 and 8% were recorded at 8% OPC/4% BA 8% OPC/2% BA and 8% OPC/4% BA, treatments when SP, WAS and MP compactive effort were used, respectively. The durability of specimens was determined by immersion in water. Soils treatment at 8% OPC/ 4% BA blend gave a value of 50% resistance to loss in strength value which is acceptable because of the harsh test condition of 7 days soaking period specimens were subjected instead of the 4 days soaking period that specified a minimum resistance to loss in strength of 80%. Finally An optimal blend of is 8% OPC/ 4% BA is recommended for treatment of expansive black cotton soil for use as a sub-base material.

Keywords: Bagasse ash, California bearing ratio, Compaction, Durability, Ordinary Portland cement, Unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566
1761 Security Architecture for Cloud Networking: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.

Keywords: Cloud Computing, Cloud Networking, IaaS, PaaS, SaaS, Cloud Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
1760 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk

Abstract:

Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.

Keywords: Bone mineral density, BMD, body mass index, BMI, obesity, overweight, postmenopausal women, osteoarthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
1759 Evaluation of Wavelet Filters for Image Compression

Authors: G. Sadashivappa, K. V. S. AnandaBabu

Abstract:

The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.

Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
1758 Relationship between Communication Effectiveness and the Extent of Communication among Organizational Units

Authors: D. Charvatova

Abstract:

This contribution deals with the relationship between communication effectiveness and the extent of communication among organizational units. To facilitate communication between employees and to increase the level of understanding, the knowledge of communication tools is necessary. Recent experience has shown that personal communication is critical for smooth running of companies and cannot be fully replaced by any form of technical communication devices. Below are presented the outcomes of the research on the relationship between the extent of communication among organisational units and its efficiency.

Keywords: Company meetings, corporate culture, efficiency, effective communication, form of communication, information, organizational units, quality of communication, strategy, subordinates, superiors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
1757 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
1756 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
1755 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179
1754 An Extension of Multi-Layer Perceptron Based on Layer-Topology

Authors: Jānis Zuters

Abstract:

There are a lot of extensions made to the classic model of multi-layer perceptron (MLP). A notable amount of them has been designed to hasten the learning process without considering the quality of generalization. The paper proposes a new MLP extension based on exploiting topology of the input layer of the network. Experimental results show the extended model to improve upon generalization capability in certain cases. The new model requires additional computational resources to compare to the classic model, nevertheless the loss in efficiency isn-t regarded to be significant.

Keywords: Learning algorithm, multi-layer perceptron, topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1753 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: Political tendency, prediction, sentiment analysis, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
1752 Fast 2.5D Model Reconstruction of Assembled Parts with High Occlusion for Completeness Inspection

Authors: Matteo Munaro, Stefano Michieletto, Edmond So, Daniele Alberton, Emanuele Menegatti

Abstract:

In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstruction of electronic boards are presented, together with a comparison with a commercial system.

Keywords: 3D quality inspection, 2.5D reconstruction, laser triangulation, occlusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
1751 The Effect of Innovation Factors to Customer Loyalty by Structural Equation Model

Authors: M. Dachyar, Fatkhurrohman

Abstract:

Innovation is being view from four areas of innovation, product, service, technology, and marketing. Whereas customer loyalty is composed of customer expectation, perceived quality, perceived value, corporate image, customer satisfaction, customer trust/confidence, customer commitment, customer complaint, and customer loyalty. This study aimed to investigate the influence of innovation factors to customer loyalty to GSM in the telecom companies where use of products and services. Structural Equation Modeling (SEM) using to analyze innovation factors. It was found the factor of innovation have significant influence on customer loyalty.

Keywords: Innovation, telecommunication, customer loyalty, SEM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430
1750 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363