Search results for: Cost of capital
155 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors
Authors: G. Bumanis, D. Bajare
Abstract:
With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.
Keywords: Alkaline material, buffer capacity, biogas production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058154 Shear Strength of Reinforced Web Openings in Steel Beams
Authors: K. S. Sivakumaran, Bo Chen
Abstract:
The floor beams of steel buildings, cold-formed steel floor joists in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, Finite Element Method (FEM) based analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced openings. This paper presents the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced opening. The study considered simply-supported rectangular plates subjected to in-plane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Langrangian with large displacement/small strain formulation was used for such analyses. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration.
Keywords: Cold-formed steel, finite element analysis, opening, reinforcement, shear resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021153 PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks
Authors: A. K. Prajapati
Abstract:
In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.Keywords: Sensor Network, Graph Theory, MSN, Communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464152 Evaluation of Energy and Environmental Aspects of Reduced Tillage Systems Applied in Maize Cultivation
Authors: E. Sarauskis, L. Masilionyte, Z. Kriauciuniene, K. Romaneckas, S. Buragiene
Abstract:
In maize growing technologies, tillage technological operations are the most time-consuming and require the greatest fuel input. Substitution of conventional tillage, involving deep ploughing, by other reduced tillage methods can reduce technological production costs, diminish soil degradation and environmental pollution from greenhouse gas emissions, as well as improve economic competitiveness of agricultural produce.
Experiments designed to assess energy and environmental aspects associated with different reduced tillage systems, applied in maize cultivation were conducted at Aleksandras Stulginskis University taking into account Lithuania’s economic and climate conditions. The study involved 5 tillage treatments: deep ploughing (DP, control), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC) and no-tillage (NT).
Our experimental evidence suggests that with the application of reduced tillage systems it is feasible to reduce fuel consumption by 13-58% and working time input by 8.4% to nearly 3-fold, to reduce the cost price of maize cultivation technological operations, decrease environmental pollution with CO2 gas by 30 to 146 kg ha-1, compared with the deep ploughing.
Keywords: Reduced tillage, energy and environmental assessment, fuel consumption, CO2 emission, maize.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094151 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel
Authors: F. M. Pisano, M. Ciminello
Abstract:
Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.
Keywords: Interactive dashboards, optical fibers, structural health monitoring, visual analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830150 Greywater Treatment Using Activated Biochar Produced from Agricultural Waste
Authors: Pascal Mwenge, Tumisang Seodigeng
Abstract:
The increase in urbanisation in South Africa has led to an increase in water demand and a decline in freshwater supply. Despite this, poor water usage is still a major challenge in South Africa, for instance, freshwater is still used for non-drinking applications. The freshwater shortage can be alleviated by using other sources of water for non-portable purposes such as greywater treated with activated biochar produced from agricultural waste. The success of activated biochar produced from agricultural waste to treat greywater can be both economically and environmentally beneficial. Greywater treated with activated biochar produced from agricultural waste is considered a cost-effective wastewater treatment. This work was aimed at determining the ability of activated biochar to remove Total Suspended Solids (TSS), Ammonium (NH4-N), Nitrate (NO3-N), and Chemical Oxygen Demand (COD) from greywater. The experiments were carried out in 800 ml laboratory plastic cylinders used as filter columns. 2.5 cm layer of gravel was used at the bottom and top of the column to sandwich the activated biochar material. Activated biochar (200 g and 400 g) was loaded in a column and used as a filter medium for greywater. Samples were collected after a week and sent for analysis. Four types of greywater were treated: Kitchen, floor cleaning water, shower and laundry water. The findings showed: 95% removal of TSS, 76% of NO3-N and 63% of COD on kitchen greywater and 85% removal of NH4-N on bathroom greywater, as highest removal of efficiency of the studied pollutants. The results showed that activated biochar produced from agricultural waste reduces a certain amount of pollutants from greywater. The results also indicated the ability of activated biochar to treat greywater for onsite non-potable reuse purposes.
Keywords: Activated biochar produced from agriculture waste, ammonium (NH4-N), chemical oxygen demand (COD), greywater, nitrate (NO3-N), total suspended solids (TSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425149 Pyrethroid Resistance and Its Mechanism in Field Populations of the Sand Termite, Psammotermes hypostoma Desneux
Authors: Mai. M. Toughan, Ahmed A. A. Sallam, Ashraf O. Abd El-Latif
Abstract:
Termites are eusocial insects that are found on all continents except Antarctica. Termites have serious destructive impact, damaging local huts and crops of poor subsistence. The annual cost of termite damage and its control is determined in the billions globally. In Egypt, most of these damages are due to the subterranean termite species especially the sand termite, P. hypostoma. Pyrethroids became the primary weapon for subterranean termite control, after the use of chlorpyrifos as a soil termiticide was banned. Despite the important role of pyrethroids in termite control, its extensive use in pest control led to the eventual rise of insecticide resistance which may make many of the pyrethroids ineffective. The ability to diagnose the precise mechanism of pyrethroid resistance in any insect species would be the key component of its management at specified location for a specific population. In the present study, detailed toxicological and biochemical studies was conducted on the mechanism of pyrethroid resistance in P. hypostoma. The susceptibility of field populations of P. hypostoma against deltamethrin, α-cypermethrin and ƛ-cyhalothrin was evaluated. The obtained results revealed that the workers of P. hypostoma have developed high resistance level against the tested pyrethroids. Studies carried out through estimation of detoxification enzyme activity indicated that enhanced esterase and cytochrome P450 activities were probably important mechanisms for pyrethroid resistance in field populations. Elevated esterase activity and also additional esterase isozyme were observed in the pyrethroid-resistant populations compared to the susceptible populations. Strong positive correlation between cytochrome P450 activity and pyrethroid resistance was also reported. |Deltamethrin could be recommended as a resistance-breaking pyrethroid that is active against resistant populations of P. hypostoma.
Keywords: Psammotermes hypostoma, pyrethroid resistance, esterase, cytochrome P450.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813148 The Necessity of Biomass Application for Developing Combined Heat and Power (CHP)with Biogas Fuel: Case Study
Authors: F. Amin Salehi, L. Sharp, M. A. Abdoli, D.E.Cotton, K.Rezapour
Abstract:
The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938147 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction
Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez
Abstract:
Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.
Keywords: Black sand mineral, methyl orange, oxidation, photocatalysis, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273146 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks
Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang
Abstract:
The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.Keywords: Femtocell networks, game theory, interference mitigation, spectrum allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743145 Synthesis and Properties of Chitosan-Graft Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification
Authors: H. Ferfera-Harrar, N. Aiouaz, N. Dairi
Abstract:
Superabsorbent polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling superabsorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from wastewater is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels superabsorbents. In this study, novel multi-functional superabsorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’-methylene bisacrylamide as initiator and crosslinker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Thermogravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these superabsorbent composites was examined in various media (distilled water, saline and pH-solutions). The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic.These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from wastewater.Keywords: Chitosan, gelatin, superabsorbent, water absorbency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877144 Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms
Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias
Abstract:
Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.
Keywords: automatic clustering, bioinformatics tool, gene ontology, protein sequence annotation, semantic similarity search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128143 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.
Keywords: Hybrid electric vehicle, hybrid energy storage, battery state estimation, ate of charge, state of health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051142 Improving the Software Homologation Process through Peer Review: An Experience Report on Android Development Environment
Authors: Camila Bernardon, Diana Lemos, Mario Garcia, Thiago Souto, Bruno Bonifacio
Abstract:
In the current technological market environment, ensuring the quality of new products has become a complex challenge. In this scenario, companies have been investing in solutions that aim to reduce the execution time of software testing and lead to cost efficiency. However, companies that have a complex and specialized testing environment usually face barriers related to costly testing processes, especially in distributed settings. Sidia Institute of Technology works on research and development for the Android platform for mobile devices in Latin America. As we work in a global software development (GSD) scope, we have faced barriers caused by failures detected lately that have caused delays in the homologation release process on Android projects. Thus, we adopt an Internal Review process, using as an alternative to reduce these failures. In this paper it was presented the experience of a homologation team adopting an Internal Review process in order to increase the performance through of improving test efficiency. Using this approach, it was possible to realize a substantial improvement in quality, reliability and timeliness of our deliveries. Through the quantitative analyses, it was possible identify a positive growth in homologation efficiency of 6% after adoption of the process. In addition, we performed a qualitative analysis from the collected data through an online questionnaire. In particular, results show that association between failure reduction and review process adoption provides the most quality that has a positive effect on project milestones. We hope this report can be helpful to other companies and the scientific community to improve their process thereby increasing competitive advantages.
Keywords: Android, GSD, improvement quality process, mobile products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487141 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates
Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao
Abstract:
Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.
Keywords: Natural fiber-reinforced composites, machinability, thrust force, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813140 Assets Integrity Management in Oil and Gas Production Facilities Through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield
Authors: Iftikhar Ahmad, Youssef Elkezza
Abstract:
Sarir oilfield is in North Africa. It has facilities of oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) Well bore and wellheads; (ii) Vessels such as separators, desalters, and gas processing facilities; (iii) Pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) Other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection.
Keywords: Assets integrity management, corrosion prevention in oilfield assets, corrosion management in oilfield, corrosion prevention and inspection activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173139 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes and Xylitol under a Biorefinery Concept
Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia
Abstract:
The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever growing accepted option in the way to the development of biorefinery complexes. In the Mexican state of Sinaloa, a significant amount of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second generation bioethanol (2G), enzymes and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our work group. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU/mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.
Keywords: Biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476138 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller
Authors: P. Valsalal, S. Thangalakshmi
Abstract:
There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.
Keywords: Available line transfer capability, congestion management, FACTS device, hybrid fish-bee algorithm, ISO, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580137 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: Electrochemical sensor, molecular imprinted polymer, doxycycline, food control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175136 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia
Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein
Abstract:
This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.
Keywords: Energy efficiency, energy retrofitting, hot arid climate, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732135 Effects of Corruption and Logistics Performance Inefficiencies on Container Throughput: The Latin America Case
Authors: Fernando Seabra, Giulia P. Flores, Karolina C. Gomes
Abstract:
Trade liberalizations measures, as import tariff cuts, are not a sufficient trigger for trade growth. Given that price margins are narrow, traders and cargo operators tend to opt out of markets where the process of goods clearance is slow and costly. Excess paperwork and slow customs dispatch not only lead to institutional breakdowns and corruption but also to increasing transaction cost and trade constraints. The objective of this paper is, therefore, two-fold: First, to evaluate the relationship between institutional and infrastructural performance indexes and trade growth in container throughput; and, second, to investigate the causes for differences in container demurrage and detention fees in Latin American countries (using other emerging countries as benchmarking). The analysis is focused on manufactured goods, typically transported by containers. Institutional and infrastructure bottlenecks and, therefore, the country logistics efficiency – measured by the Logistics Performance Index (LPI, World Bank-WB) – are compared with other indexes, such as the Doing Business index (WB) and the Corruption Perception Index (Transparency International). The main results based on the comparison between Latin American countries and the others emerging countries point out in that the growth in containers trade is directly related to LPI performance. It has also been found that the main hypothesis is valid as aspects that more specifically identify trade facilitation and corruption are significant drivers of logistics performance. The exam of port efficiency (demurrage and detention fees) has demonstrated that not necessarily higher level of efficiency is related to lower charges; however, reductions in fees have been more significant within non-Latin American emerging countries.Keywords: Container throughput, logistics performance, corruption, Latin America.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561134 Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device
Authors: Smaali Assia, Outemzabet Ratiba, Media El Mahdi, Kadi Mohamed
Abstract:
Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.Keywords: Doping, oxide, reflectance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915133 Selective Encryption using ISMA Cryp in Real Time Video Streaming of H.264/AVC for DVB-H Application
Authors: Jay M. Joshi, Upena D. Dalal
Abstract:
Multimedia information availability has increased dramatically with the advent of video broadcasting on handheld devices. But with this availability comes problems of maintaining the security of information that is displayed in public. ISMA Encryption and Authentication (ISMACryp) is one of the chosen technologies for service protection in DVB-H (Digital Video Broadcasting- Handheld), the TV system for portable handheld devices. The ISMACryp is encoded with H.264/AVC (advanced video coding), while leaving all structural data as it is. Two modes of ISMACryp are available; the CTR mode (Counter type) and CBC mode (Cipher Block Chaining) mode. Both modes of ISMACryp are based on 128- bit AES algorithm. AES algorithms are more complex and require larger time for execution which is not suitable for real time application like live TV. The proposed system aims to gain a deep understanding of video data security on multimedia technologies and to provide security for real time video applications using selective encryption for H.264/AVC. Five level of security proposed in this paper based on the content of NAL unit in Baseline Constrain profile of H.264/AVC. The selective encryption in different levels provides encryption of intra-prediction mode, residue data, inter-prediction mode or motion vectors only. Experimental results shown in this paper described that fifth level which is ISMACryp provide higher level of security with more encryption time and the one level provide lower level of security by encrypting only motion vectors with lower execution time without compromise on compression and quality of visual content. This encryption scheme with compression process with low cost, and keeps the file format unchanged with some direct operations supported. Simulation was being carried out in Matlab.Keywords: AES-128, CAVLC, H.264, ISMACryp
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049132 Investigation of Boll Properties on Cotton Picker Machine Performance
Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari
Abstract:
Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.
Keywords: Cotton, bract, harvester, carpel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712131 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures
Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher
Abstract:
Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.
Keywords: CO2 capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883130 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing
Authors: Daniel M. Muntean, Viorel Ungureanu
Abstract:
More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.
Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035129 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser
Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua
Abstract:
In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.
Keywords: Energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958128 The Necessity of Biomass Application for Developing Combined Heat and Power(CHP) with Biogas Fuel: Case Study
Authors: Farnaz Amin Salehi, David Edward.Cotton, Mohammad Ali Abdoli, Kambiz Rezapour
Abstract:
The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651127 Water and Soil Environment Pollution Reduction by Filter Strips
Authors: Roy R. Gu, Mahesh Sahu, Xianggui Zhao
Abstract:
Contour filter strips planted with perennial vegetation can be used to improve surface and ground water quality by reducing pollutant, such as NO3-N, and sediment outflow from cropland to a river or lake. Meanwhile, the filter strips of perennial grass with biofuel potentials also have economic benefits of producing ethanol. In this study, The Soil and Water Assessment Tool (SWAT) model was applied to the Walnut Creek Watershed to examine the effectiveness of contour strips in reducing NO3-N outflows from crop fields to the river or lake. Required input data include watershed topography, slope, soil type, land-use, management practices in the watershed and climate parameters (precipitation, maximum/minimum air temperature, solar radiation, wind speed and relative humidity). Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were selected for simulating the effects of strip size and location on stream water quality. Simulation results showed that a filter strip having 10%-50% of the subbasin area could lead to 55%- 90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10-20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. The results of this study can assist in cost-benefit analysis and decision-making in best water resources management practices for environmental protection.Keywords: modeling, SWAT, water quality, NO3-N, watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742126 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts
Authors: Stephanie Ho
Abstract:
This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.
Keywords: Arts-informed pedagogies, language arts, literature, Surrealism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733