Search results for: image classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2463

Search results for: image classification

333 An Optical Flow Based Segmentation Method for Objects Extraction

Authors: C. Lodato, S. Lopes

Abstract:

This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
332 Information Security in E-Learning through Identification of Humans

Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour

Abstract:

During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.

Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
331 Tensile Behavior of Spheroidizing Heat Treated High Carbon Steel

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Spheroidization heat treatment was conducted on the  SK85 high carbon steel sheets with various initial microstructures  obtained after cold rolling by various reduction ratios at a couple of  annealing temperatures. On the high carbon steel sheet with fine  pearlite microstructure, obtained by soaking at 800oC for 2hr in a box furnace and then annealing at 570oC for 5min in a salt bath furnace followed by water quenching, cold rolling was conducted by reduction ratios of 20, 30, and 40%. Heat treatment for spheroidization was carried out at 600 and 720oC for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times. Tensile tests were carried out at room temperature on the spheoidized high carbon steel.

 

Keywords: High carbon steel, SK85, pearlite, cementite, shperoidization, tensile behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4132
330 Computer Graphics and Understanding Semiotics in Design

Authors: Manoj Majhi, Debkumar Chakrabaty

Abstract:

The objective of the paper was to understand the use of an important element of design, namely color in a Semiotic system. Semiotics is the study of signs and sign processes, it is often divided into three branches namely (i) Semantics that deals with the relation between signs and the things to which they refer to mean, (ii) Syntactics which addresses the relations among signs in formal structures and (iii) Pragmatics that relates between signs and its effects on they have on the people who use them to create a plan for an object or a system referred to as design. Cubism with its versatility was the key design tool prevalent across the 20th century. In order to analyze the user's understanding of interaction and appreciation of color through the movement of Cubism, an exercise was undertaken in Dept. of Design, IIT Guwahati. This included tasks to design a composition using color and sign process to the theme 'Between the Lines' on a given tessellation where the users relate their work to the world they live in, which in this case was the college campus of IIT Guwahati. The findings demonstrate impact of the key design element color on the principles of visual perception based on image analysis of specific compositions.

Keywords: Color in Semiotics, Cubism and novice designer, visual perception, multimedia and communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
329 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
328 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: Drought index, climatic projections, precipitation of the Uruguay River Basin, Standardized Precipitation Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
327 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods

Authors: Mochammad Dewo, Sumarsono Sudarto

Abstract:

The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.

Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224
326 Methods of Geodesic Distance in Two-Dimensional Face Recognition

Authors: Rachid Ahdid, Said Safi, Bouzid Manaut

Abstract:

In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.

Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
325 An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
324 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho

Abstract:

Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.

Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
323 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
322 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
321 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
320 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model

Authors: Banashree N. P., R. Vasanta

Abstract:

Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.

Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
319 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
318 Effects of Upstream Wall Roughness on Separated Turbulent Flow over a Forward Facing Step in an Open Channel

Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie

Abstract:

The effect of upstream surface roughness over a smooth forward facing step in an open channel was investigated using a particle image velocimetry technique. Three different upstream surface topographies consisting of hydraulically smooth wall, sandpaper 36 grit and sand grains were examined. Besides the wall roughness conditions, all other upstream flow characteristics were kept constant. It was also observed that upstream roughness decreased the approach velocity by 2% and 10% but increased the turbulence intensity by 14% and 35% at the wall-normal distance corresponding to the top plane of the step compared to smooth upstream. The results showed that roughness decreased the reattachment lengths by 14% and 30% compared to smooth upstream. Although the magnitudes of maximum positive and negative Reynolds shear stress in separated and reattached region were 0.02Ue for all the cases, the physical size of both the maximum and minimum contour levels were decreased by increasing upstream roughness.

Keywords: Forward facing step, open channel, separated and reattached turbulent flows, wall roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
317 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
316 Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

Authors: S. N. Hosseini, S. M. H. Karimian

Abstract:

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

Keywords: Immersed Boundary Method, conservation of mass and momentum laws, moving boundary, boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
315 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
314 Study of Compaction in Hot-Mix Asphalt Using Computer Simulations

Authors: Kasthurirangan Gopalakrishnan, Naga Shashidhar, Xiaoxiong Zhong

Abstract:

During the process of compaction in Hot-Mix Asphalt (HMA) mixtures, the distance between aggregate particles decreases as they come together and eliminate air-voids. By measuring the inter-particle distances in a cut-section of a HMA sample the degree of compaction can be estimated. For this, a calibration curve is generated by computer simulation technique when the gradation and asphalt content of the HMA mixture are known. A two-dimensional cross section of HMA specimen was simulated using the mixture design information (gradation, asphalt content and air-void content). Nearest neighbor distance methods such as Delaunay triangulation were used to study the changes in inter-particle distance and area distribution during the process of compaction in HMA. Such computer simulations would enable making several hundreds of repetitions in a short period of time without the necessity to compact and analyze laboratory specimens in order to obtain good statistics on the parameters defined. The distributions for the statistical parameters based on computer simulations showed similar trends as those of laboratory specimens.

Keywords: Computer simulations, Hot-Mix Asphalt (HMA), inter-particle distance, image analysis, nearest neighbor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
313 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
312 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are class balancing, data shuffling, and standardization, were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the sequential model and ReLU activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: Spectroscopy, soluble solid content, pineapple, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120
311 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
310 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

Authors: Jungho Choi, Youngwan Cho

Abstract:

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
309 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
308 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Authors: Sanaa Chafik, ImaneDaoudi, Mounim A. El Yacoubi, Hamid El Ouardi

Abstract:

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Keywords: Approximate Nearest Neighbor Search, Content based image retrieval (CBIR), Curse of dimensionality, Locality sensitive hashing, Multidimensional indexing, Scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
307 Gender Component in the National Project of Kazakhstan

Authors: D.Nuketaeva, A.Kanagatova, I.Khan, B.Kylyshbayeva, G.Bektenova

Abstract:

This article describes the aspects of the formation of the national idea and national identity through the prism of gender control and its contradistinction to the obsolete, Soviet component. The role of females in ethnic and national projects is considered from the point of view of Dr. Nira Yuval-Davis: as biological reproducers of the ethnic communities- members; as reproducers of the boarders of ethnic/national groups; as central participants in the ideological reproduction of community and transducers of its culture; as symbols in ideology, reproduction and transformation of ethnic/national categories; and as participants of national, economical, political and military combats. The society of the transitional type uses the symbolic resources of the formation of gender component in the national project. The gender patterns act like cultural codes, executing the important ideological function in formation of the national female- image, i.e. the discussion on hijab - it-s not just the discussion on control over the female body, it-s the discussion on the metaphor of social order.

Keywords: nation, gender, hijab, Islam, ideology, politics, national idea, national identity, society of the transitional type

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
306 Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC

Authors: T. Song, T. Shimamoto

Abstract:

In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.

Keywords: Motion estimation, VLSI, image processing, search patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
305 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, marketing, online marketplace, recommendation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
304 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA

Authors: Sanghyeok Oh, Keechul Jung

Abstract:

Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.

Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339