Search results for: conventional heat pipe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2773

Search results for: conventional heat pipe

673 Risk Factors in a Road Construction Site

Authors: V.R Gannapathy, S.K Subramaniam, A.B Mohamad Diah, M.K Suaidi, A.H Hamidon

Abstract:

The picture of a perfect road construction site is the one that utilizes conventional vertical road signs and a flagman to optimize the traffic flow with minimum hazel to the public. Former research has been carried out by Department of Occupational Safety and Health (DOSH) and Ministry of Works to further enhance smoothness in traffic operations and particularly in safety issues within work zones. This paper highlights on hazardous zones in a certain road construction or road maintenance site. Most cases show that the flagman falls into high risk of fatal accidents within work zone. Various measures have been taken by both the authorities and contractors to overcome such miseries, yet it-s impossible to eliminate the usage of a flagman since it is considered the best practice. With the implementation of new technologies in automating the traffic flow in road construction site, it is possible to eliminate the usage of a flagman. The intelligent traffic light system is designed to solve problems which contribute hazardous at road construction site and to be inline with the road safety regulation which is taken into granted.

Keywords: Intelligent Traffic Light, Critical Zones, Safety Regulation, Flagman

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6368
672 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media

Authors: A. Mahdy

Abstract:

The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.

Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
671 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process

Authors: Amer M. Momani, Abdulaziz A. Ahmed

Abstract:

The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.

Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3140
670 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy

Authors: M. Veeresham

Abstract:

The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.

Keywords: Refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
669 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater

Authors: Bhausaheb L. Pangarkar, M.G. Sane

Abstract:

Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.

Keywords: MD, ground water, seawater, AGMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
668 In-Plane Shear Tests of Prefabricated Masonry Panel System with Two-Component Polyurethane Adhesive

Authors: E. Fehling, P. Capewell

Abstract:

In recent years, the importance of masonry glued by polyurethane adhesive has increased. In 2021, the Institute of Structural Engineering of the University of Kassel was commissioned to carry out quasi-static in-plane shear tests on prefabricated brick masonry panel systems with 2K PUR adhesive in order to investigate the load-bearing behavior during earthquakes. In addition to the usual measurement of deformations using displacement transducers, all tests were documented using an optical measuring system, which was used to determine the surface strains and deformations of the test walls. To compare the results with conventional mortar walls, additional reference tests were carried out on test specimens with thin-bed mortar joints. This article summarizes the results of the test program and provides a comparison between the load-bearing behavior of masonry bonded with polyurethane adhesive and thin-bed mortar in order to enable realistic non-linear modeling.

Keywords: Glued Masonry, in-plane tests, shear resistance, polyurethane adhesive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45
667 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
666 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam

Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai

Abstract:

This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.

Keywords: Composite girder, elastic theory, preflex beam, prestressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
665 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder

Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav

Abstract:

Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.

Keywords: Bitumen, crumb rubber, modification, rheological properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
664 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: Moving load, moving substructure, dynamic responses, forced vibration responses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
663 Application of PSK Modulation in ADS-B 1090 Extended Squitter Authentication

Authors: A-Q. Nguyen. A. Amrhar, J. Zambrano, G. Brown, O.A. Yeste-Ojeda, R. Jr. Landry

Abstract:

Since the presence of Next Generation Air Transportation System (NextGen), Automatic Dependent Surveillance-Broadcast (ADS-B) has raised specific concerns related to the privacy and security, due to its vulnerable, low-level of security and limited payload. In this paper, the authors introduce and analyze the combination of Pulse Amplitude Modulation (PAM) and Phase Shift Keying (PSK) Modulation in conventional ADS-B, forming Secure ADS-B (SADS-B) avionics. In order to demonstrate the potential of this combination, Hardware-in-the-loop (HIL) simulation was used. The tests' results show that, on the one hand, SADS-B can offer five times the payload as its predecessor. This additional payload of SADS-B can be used in various applications, therefore enhancing the ability and efficiency of the current ADS-B. On the other hand, by using the extra phase modulated bits as a digital signature to authenticate ADS-B messages, SADS-B can increase the security of ADS-B, thus ensure a more secure aviation as well. More importantly, SADS-B is compatible with the current ADS-B In and Out. Hence, no significant modifications will be needed to implement this idea. As a result, SADS-B can be considered the most promising approach to enhance the capability and security of ADS-B.

Keywords: ADS-B authentication, ADS-B security, NextGen ADS-B, PSK signature, secure ADS-B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
662 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
661 Viscosity Model for Predicting the Power Output from Ocean Salinity and Temperature Energy Conversion System (OSTEC) Part 1: Theoretical Formulation

Authors: Ag. S. Abd. Hamid, S. K. Lee, J. Dayou, R. Yusoff, F. Sulaiman

Abstract:

The mixture between two fluids of different salinity has been proven to capable of producing electricity in an ocean salinity energy conversion system known as hydrocratic generator. The system relies on the difference between the salinity of the incoming fresh water and the surrounding sea water in the generator. In this investigation, additional parameter is introduced which is the temperature difference between the two fluids; hence the system is known as Ocean Salinity and Temperature Energy Conversion System (OSTEC). The investigation is divided into two papers. This first paper of Part 1 presents the theoretical formulation by considering the effect of fluid dynamic viscosity known as Viscosity Model and later compares with the conventional formulation which is Density Model. The dynamic viscosity model is used to predict the dynamic of the fluids in the system which in turns gives the analytical formulation of the potential power output that can be harvested. 

Keywords: Buoyancy, density, frictional head loss, kinetic power, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
660 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen

Abstract:

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
659 A New Design of Temperature-Controlled Chamber for OLED Panels

Authors: Hsin-Hung Chang, Jin-Lung Guan, Ming-Ta Yang

Abstract:

This paper presents an inexpensive and effective temperature-controlled chamber for temperature environment tests of Organic Light Emitting Diode (OLED) panels. The proposed chamber is a compact warmer and cooler with an exact temperature control system. In the temperature-controlled space of the chamber, thermoelectric modules (TEMs) are utilized to cool or to heat OLED panels, novel fixtures are designed to flexibly clamp the OLED panels of different size, and special connectors for wiring between the OLED panels and the test instrument are supplied. The proposed chamber has the following features. (1) The TEMs are solid semi-conductive devices, so they operate without noise and without pollution. (2) The volume of the temperature-controlled space of the chamber about 160mm*160mm*120mm, so the chamber are compact and easy to move. (3) The range of the controlled temperatures is from -10 oC to +80 oC, and the precision is ?0.5 oC. (4) The test instrument can conveniently and easily measure the OLED panels via the novel fixtures and special connectors. In addition to a constant temperature being maintained in the chamber, a temperature shock experiments can run for a long time. Therefore, the chamber will be convenient and useful for temperature environment tests of OLED panels.

Keywords: Thermoelectric module, Temperature environment test, OLED, chamber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
658 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan H. Sosa-Arnao, Daniel J. O. Ferreira, Caice G. Santos, Justo E. Alvarez, Leonardo P. Rangel, Song W. Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, swirl burner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
657 A Novel Approach for Beneficiation and Dewatering of Coal Fines for Indian Coal Preparation Plant

Authors: K.K. Sharma, K.M.K. Sinha, T.G. Charan, D.D. Haldar

Abstract:

An attempt has been made to beneficiate the Indian coking coal fines by a combination of Spiral, flotation and Oleo Flotation processes. Beneficiation studies were also carried out on - 0.5mm coal fines using flotation and oleo flotation by splitting at size 0.063mm.Size fraction of 0.5mm-0.063mm and -0.063mm size were treated in flotation and Oleo flotation respectively. The washability studies on the fraction 3-0.5 mm indicated that good separation may be achieved when it is fed in a spiral. Combined product of Spiral, Flotation and Oleo Flotation has given a significant yield at acceptable ash%. Studies were also conducted to see the dewatering of combined product by batch type centrifuge. It may further be suggested that combination of different processes may be used to treat the -3 mm fraction in an integrated manner to achieve the yield at the desired ash level. The treatment of the 3/1 mm -0.5 mm size fraction by spiral,-0.5-0.63 mm by conventional froth flotation and - 0.063 fractions by oleo flotation may provide a complete solution of beneficiation and dewatering of coal fines, and can effectively address the environmental problems caused by coal fines.

Keywords: coal fines, dewatering, environment, flotation, oleoflotation, spiral

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
656 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: Multi-disciplinary optimization, aircraft load, finite element analysis, Stick Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
655 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda

Abstract:

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
654 Performance Evaluation of Purely Mechanical Wireless In-Mould Sensor for Injection Moulding

Authors: Florian Müller, Christian Kukla, Thomas Lucyshyn, Clemens Holzer

Abstract:

In this paper, the influencing parameters of a novel purely mechanical wireless in-mould injection moulding sensor were investigated. The sensor is capable of detecting the melt front at predefined locations inside the mould. The sensor comprises a movable pin which acts as the sensor element generating structure-borne sound triggered by the passing melt front. Due to the sensor design, melt pressure is the driving force. For pressure level measurement during pin movement a pressure transducer located at the same position as the movable pin. By deriving a mathematical model for the mechanical movement, dominant process parameters could be investigated towards their impact on the melt front detection characteristic. It was found that the sensor is not affected by the investigated parameters enabling it for reliable melt front detection. In addition, it could be proved that the novel sensor is in comparable range to conventional melt front detection sensors.

Keywords: Injection Moulding, In-Mould Sensor, Structure-Borne Sound, Wireless Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
653 Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation

Authors: M. Habchi, S.M. Mesli, M. Kotbi

Abstract:

The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.

Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
652 Induction Motor Efficiency Estimation using Genetic Algorithm

Authors: Khalil Banan, Mohammad B.B. Sharifian, Jafar Mohammadi

Abstract:

Due to the high percentage of induction motors in industrial market, there exist a large opportunity for energy savings. Replacement of working induction motors with more efficient ones can be an important resource for energy savings. A calculation of energy savings and payback periods, as a result of such a replacement, based on nameplate motor efficiency or manufacture-s data can lead to large errors [1]. Efficiency of induction motors (IMs) can be extracted using some procedures that use the no-load test results. In the cases that we must estimate the efficiency on-line, some of these procedures can-t be efficient. In some cases the efficiency estimates using the rating values of the motor, but these procedures can have errors due to the different working condition of the motor. In this paper the efficiency of an IM estimated by using the genetic algorithm. The results are compared with the measured values of the torque and power. The results show smaller errors for this procedure compared with the conventional classical procedures, hence the cost of the equipments is reduced and on-line estimation of the efficiency can be made.

Keywords: Genetic algorithm, induction motor, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
651 Parallel Distributed Computational Microcontroller System for Adaptive Antenna Downlink Transmitter Power Optimization

Authors: K. Prajindra Sankar, S.K. Tiong, S.P. Johnny Koh

Abstract:

This paper presents a tested research concept that implements a complex evolutionary algorithm, genetic algorithm (GA), in a multi-microcontroller environment. Parallel Distributed Genetic Algorithm (PDGA) is employed in adaptive beam forming technique to reduce power usage of adaptive antenna at WCDMA base station. Adaptive antenna has dynamic beam that requires more advanced beam forming algorithm such as genetic algorithm which requires heavy computation and memory space. Microcontrollers are low resource platforms that are normally not associated with GAs, which are typically resource intensive. The aim of this project was to design a cooperative multiprocessor system by expanding the role of small scale PIC microcontrollers to optimize WCDMA base station transmitter power. Implementation results have shown that PDGA multi-microcontroller system returned optimal transmitted power compared to conventional GA.

Keywords: Microcontroller, Genetic Algorithm, Adaptiveantenna, Power optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
650 Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture

Authors: J. H. Zhou, C. S. Cheung, C. W. Leung

Abstract:

The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.

Keywords: Combustion characteristics, diesel engine, emissions, methane/hydrogen mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3694
649 The Comparative Investigation and Calculation of Thermo-Neutronic Parameters on Two Gens II and III Nuclear Reactors with Same Powers

Authors: Mousavi Shirazi, Seyed Alireza, Rastayesh, Sima

Abstract:

Whereas in the third generation nuclear reactors, dimensions of core and also the kind of coolant and enrichment percent of fuel have significantly changed than the second generation, therefore in this article the aim is based on a comparative investigation between two same power reactors of second and third generations, that the neutronic parameters of both reactors such as: K∞, Keff and its details and thermal hydraulic parameters such as: power density, specific power, volumetric heat rate, released power per fuel volume unit, volume and mass of clad and fuel (consisting fissile and fertile fuels), be calculated and compared together. By this comparing the efficiency and modification of third generation nuclear reactors than second generation which have same power can be distinguished. In order to calculate the cited parameters, some information such as: core dimensions, the pitch of lattice, the fuel matter, the percent of enrichment and the kind of coolant are used. For calculating the neutronic parameters, a neutronic program entitled: SIXFAC and also related formulas have been used. Meantime for calculating the thermal hydraulic and other parameters, analytical method and related formulas have been applied.

Keywords: Nuclear reactor, second generation, third generation, thermo-neutronics parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
648 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

Authors: Othman Belgassim, Krzysztof Jemielniak

Abstract:

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Keywords: AE signal, skew, kurtosis, tool failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
647 Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes

Authors: Radim Farana, Bogdan Walek, Michal Janosek, Jaroslav Zacek

Abstract:

This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.

Keywords: Control, fuzzy logic, sensitive system, technological proves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
646 Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings

Authors: G.R. Ashari, N.Hedayat, S. Shalbaf, E.Hajidavalloo

Abstract:

In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the number of fuel cell stacks to meet them have been estimated. The method involved exergy analysis and entropy generation thorough the months of the year. Results show that all the energy needs of the building can be met with 12 fuel cell stacks at a nominal capacity of 8.5 kW. Exergy analysis of the CHP system shows that the increase in the ambient air temperature from 1oC to 40oC, will have an increase of entropy generation by 5.73%.Maximum entropy generates for 15 hour in 15th of June and 15th of July is estimated to amount at 12624 (kW/K). Entropy generation of this system through a year is estimated to amount to 1004.54 GJ/k.year.

Keywords: CHP mode, entropy, exergy, no of fuel cell stacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
645 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems

Authors: Ebregbe David, Deng Weibo

Abstract:

The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.

Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
644 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: Bond strength, climate change, pull-out test, replacement of reinforcement material, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460