Search results for: optical networks.
360 A Superior Delay Estimation Model for VLSI Interconnect in Current Mode Signaling
Authors: Sunil Jadav, Rajeevan Chandel Munish Vashishath
Abstract:
Today’s VLSI networks demands for high speed. And in this work the compact form mathematical model for current mode signalling in VLSI interconnects is presented.RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The on-chip inductance effect is dominant at lower technology node is emulated into an equivalent resistance. First order transfer function is designed using finite difference equation, Laplace transform and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. The novel proposed current mode model shows superior performance as compared to voltage mode signalling. Analysis shows that current mode signalling in VLSI interconnects provides 2.8 times better delay performance than voltage mode. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.
Keywords: Current Mode, Voltage Mode, VLSI Interconnect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450359 Low-Latency and Low-Overhead Path Planning for In-band Network-Wide Telemetry
Authors: Penghui Zhang, Hua Zhang, Jun-Bo Wang, Cheng Zeng, Zijian Cao
Abstract:
With the development of software-defined networks and programmable data planes, in-band network telemetry (INT) has become an emerging technology in communications because it can get accurate and real-time network information. However, due to the expansion of the network scale, existing telemetry systems, to the best of the authors’ knowledge, have difficulty in meeting the common requirements of low overhead, low latency and full coverage for traffic measurement. This paper proposes a network-wide telemetry system with a low-latency low-overhead path planning (INT-LLPP). This paper builds a mathematical model to analyze the telemetry overhead and latency of INT systems. Then, we adopt a greedy-based path planning algorithm to reduce the overhead and latency of the network telemetry with the full network coverage. The simulation results show that network-wide telemetry is achieved and the telemetry overhead can be reduced significantly compared with existing INT systems. INT-LLPP can control the system latency to get real-time network information.
Keywords: Network telemetry, network monitoring, path planning, low latency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254358 ECA-SCTP: Enhanced Cooperative ACK for SCTP Path Recovery in Concurrent Multiple Transfer
Authors: GangHeok Kim, SungHoon Seo, JooSeok Song
Abstract:
Stream Control Transmission Protocol (SCTP) has been proposed to provide reliable transport of real-time communications. Due to its attractive features, such as multi-streaming and multihoming, the SCTP is often expected to be an alternative protocol for TCP and UDP. In the original SCTP standard, the secondary path is mainly regarded as a redundancy. Recently, most of researches have focused on extending the SCTP to enable a host to send its packets to a destination over multiple paths simultaneously. In order to transfer packets concurrently over the multiple paths, the SCTP should be well designed to avoid unnecessary fast retransmission and the mis-estimation of congestion window size through the paths. Therefore, we propose an Enhanced Cooperative ACK SCTP (ECASCTP) to improve the path recovery efficiency of multi-homed host which is under concurrent multiple transfer mode. We evaluated the performance of our proposed scheme using ns-2 simulation in terms of cwnd variation, path recovery time, and goodput. Our scheme provides better performance in lossy and path asymmetric networks.Keywords: SCTP, Concurrent Multiple Transfer, CooperativeSack, Dynamic ack policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546357 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3630356 A Bi-Objective Model for Location-Allocation Problem within Queuing Framework
Authors: Amirhossein Chambari, Seyed Habib Rahmaty, Vahid Hajipour, Aida Karimi
Abstract:
This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.Keywords: Queuing, Location, Bi-objective, NSGA-II, NRGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276355 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators
Authors: R. Shivarudraswamy, D. N. Gaonkar
Abstract:
The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.
Keywords: Distributed generation, voltage control, sensitivity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576354 Optimization of GAMM Francis Turbine Runner
Authors: Sh. Derakhshan, A. Mostafavi
Abstract:
Nowadays, the challenge in hydraulic turbine design is the multi-objective design of turbine runner to reach higher efficiency. The hydraulic performance of a turbine is strictly depends on runner blades shape. The present paper focuses on the application of the multi-objective optimization algorithm to the design of a small Francis turbine runner. The optimization exercise focuses on the efficiency improvement at the best efficiency operating point (BEP) of the GAMM Francis turbine. A global optimization method based on artificial neural networks (ANN) and genetic algorithms (GA) coupled by 3D Navier-Stokes flow solver has been used to improve the performance of an initial geometry of a Francis runner. The results show the good ability of optimization algorithm and the final geometry has better efficiency with initial geometry. The goal was to optimize the geometry of the blades of GAMM turbine runner which leads to maximum total efficiency by changing the design parameters of camber line in at least 5 sections of a blade. The efficiency of the optimized geometry is improved from 90.7% to 92.5%. Finally, design parameters and the way of selection have been considered and discussed.Keywords: Francis Turbine, Runner, Optimization, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3343353 CAPWAP Status and Design Considerations for Seamless Roaming Support
Authors: M. Balfaqih, S. Haseeb, M. H. Mazlan, S. N. Hasnan, O. Mahmoud, A. Hashim
Abstract:
Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.Keywords: 802.11, centralized Architecture, CAPWAP, Roaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038352 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface
Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi
Abstract:
By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard.
Keywords: Bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589351 Tipover Stability Enhancement of Wheeled Mobile Manipulators Using an Adaptive Neuro- Fuzzy Inference Controller System
Authors: A. Ghaffari, A. Meghdari, D. Naderi, S. Eslami
Abstract:
In this paper an algorithm based on the adaptive neuro-fuzzy controller is provided to enhance the tipover stability of mobile manipulators when they are subjected to predefined trajectories for the end-effector and the vehicle. The controller creates proper configurations for the manipulator to prevent the robot from being overturned. The optimal configuration and thus the most favorable control are obtained through soft computing approaches including a combination of genetic algorithm, neural networks, and fuzzy logic. The proposed algorithm, in this paper, is that a look-up table is designed by employing the obtained values from the genetic algorithm in order to minimize the performance index and by using this data base, rule bases are designed for the ANFIS controller and will be exerted on the actuators to enhance the tipover stability of the mobile manipulator. A numerical example is presented to demonstrate the effectiveness of the proposed algorithm.Keywords: Mobile Manipulator, Tipover Stability Enhancement, Adaptive Neuro-Fuzzy Inference Controller System, Soft Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963350 Genetic Algorithm based Optimization approach for MR Dampers Fuzzy Modeling
Authors: Behnam Mehrkian, Arash Bahar, Ali Chaibakhsh
Abstract:
Magneto-rheological (MR) fluid damper is a semiactive control device that has recently received more attention by the vibration control community. But inherent hysteretic and highly nonlinear dynamics of MR fluid damper is one of the challenging aspects to employ its unique characteristics. The combination of artificial neural network (ANN) and fuzzy logic system (FLS) have been used to imitate more precisely the behavior of this device. However, the derivative-based nature of adaptive networks causes some deficiencies. Therefore, in this paper, a novel approach that employ genetic algorithm, as a free-derivative algorithm, to enhance the capability of fuzzy systems, is proposed. The proposed method used to model MR damper. The results will be compared with adaptive neuro-fuzzy inference system (ANFIS) model, which is one of the well-known approaches in soft computing framework, and two best parametric models of MR damper. Data are generated based on benchmark program by applying a number of famous earthquake records.Keywords: Benchmark program, earthquake record filtering, fuzzy logic, genetic algorithm, MR damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117349 A New Fuzzy Decision Support Method for Analysis of Economic Factors of Turkey's Construction Industry
Authors: R. Tur, A. Yardımcı
Abstract:
Imperfect knowledge cannot be avoided all the time. Imperfections may have several forms; uncertainties, imprecision and incompleteness. When we look to classification of methods for the management of imperfect knowledge we see fuzzy set-based techniques. The choice of a method to process data is linked to the choice of knowledge representation, which can be numerical, symbolic, logical or semantic and it depends on the nature of the problem to be solved for example decision support, which will be mentioned in our study. Fuzzy Logic is used for its ability to manage imprecise knowledge, but it can take advantage of the ability of neural networks to learn coefficients or functions. Such an association of methods is typical of so-called soft computing. In this study a new method was used for the management of imprecision for collected knowledge which related to economic analysis of construction industry in Turkey. Because of sudden changes occurring in economic factors decrease competition strength of construction companies. The better evaluation of these changes in economical factors in view of construction industry will made positive influence on company-s decisions which are dealing construction.
Keywords: Fuzzy logic, decision support systems, construction industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636348 Parametric Modeling Approach for Call Holding Times for IP based Public Safety Networks via EM Algorithm
Authors: Badarch Tuyatsetseg
Abstract:
This paper presents parametric probability density models for call holding times (CHTs) into emergency call center based on the actual data collected for over a week in the public Emergency Information Network (EIN) in Mongolia. When the set of chosen candidates of Gamma distribution family is fitted to the call holding time data, it is observed that the whole area in the CHT empirical histogram is underestimated due to spikes of higher probability and long tails of lower probability in the histogram. Therefore, we provide the Gaussian parametric model of a mixture of lognormal distributions with explicit analytical expressions for the modeling of CHTs of PSNs. Finally, we show that the CHTs for PSNs are fitted reasonably by a mixture of lognormal distributions via the simulation of expectation maximization algorithm. This result is significant as it expresses a useful mathematical tool in an explicit manner of a mixture of lognormal distributions.Keywords: A mixture of lognormal distributions, modeling call holding times, public safety network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650347 Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure
Authors: Jiri F. Urbanek, Jiri Barta, Oldrich Svoboda, Jiri J. Urbanek
Abstract:
The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.
Keywords: Added Value, DYVELOP, Controlling, Environments, Process Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756346 Massive Lesions Classification using Features based on Morphological Lesion Differences
Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo
Abstract:
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382345 Intelligent Modeling of the Electrical Activity of the Human Heart
Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos
Abstract:
The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827344 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642343 SEM Image Classification Using CNN Architectures
Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.
Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198342 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System
Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz
Abstract:
As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.
Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448341 Coupling Phenomenon between the Lightning and High Voltage Networks
Authors: Dib Djalel, Haddouche Ali, Chellali Benachiba
Abstract:
When a lightning strike falls near an overhead power line, the intense electromagnetic field radiated by the current of the lightning return stroke coupled with power lines and there induced transient overvoltages, which can cause a back-flashover in electrical network. The indirect lightning represents a major danger owing to the fact that it is more frequent than that which results from the direct strikes. In this paper we present an analysis of the electromagnetic coupling between an external electromagnetic field generated by the lightning and an electrical overhead lines, so we give an important and original contribution: We are based on our experimental measurements which we carried in the high voltage laboratories of EPFL in Switzerland during the last trimester of 2005, on the recent works of other authors and with our mathematical improvement a new particular analytical expression of the electromagnetic field generated by the lightning return stroke was developed and presented in this paper. The results obtained by this new electromagnetic field formulation were compared with experimental results and give a reasonable approach.Keywords: Lightning, overhead lines, electromagneticcoupling, return stroke, models, induced overvoltages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487340 General Awareness of Teenagers in Information Security
Authors: Magdalena Naplavova, Tomas Ludik, Petr Hruza, Frantisek Bozek
Abstract:
The use of IT equipment has become a part of every day. However, each device that is part of cyberspace should be secured against unauthorized use. It is very important to know the basics of these security devices, but also the basics of safe conduct their owners. This information should be part of every curriculum computer science education in primary and secondary schools. Therefore, the work focuses on the education of pupils in primary and secondary schools on the Internet. Analysis of the current state describes approaches to the education of pupils in security issues on the Internet. The paper presents a questionnaire-based survey which was carried out in the Czech Republic, whose task was to ascertain the level of opinion pupils in primary and secondary schools on the issue of communication in social networks. The research showed that awareness of socio-pathological phenomena on the Internet environment is very low. Based on the results it was proposed appropriate ways of teaching to this issue and its inclusion a proposal of curriculum for primary and secondary schools.
Keywords: Cyberspace, educational system, general awareness, information security, questionnaire, socio-pathological phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347339 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185338 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079337 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.Keywords: JPSO, operation, optimization, water distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051336 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.
Keywords: Artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778335 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network
Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin
Abstract:
Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.
Keywords: eConsent, health social network, mixed methods, situation awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850334 Prioritizing Service Quality Dimensions: A Neural Network Approach
Authors: A. Golmohammadi, B. Jahandideh
Abstract:
One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.Keywords: service quality, customer satisfaction, relative importance, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643333 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601332 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093331 Adaptive Image Transmission with P-V Diversity in Multihop Wireless Mesh Networks
Authors: Wei Wang, Dongming Peng, Honggang Wang, Hamid Sharif
Abstract:
Multirate multimedia delivery applications in multihop Wireless Mesh Network (WMN) are data redundant and delay-sensitive, which brings a lot of challenges for designing efficient transmission systems. In this paper, we propose a new cross layer resource allocation scheme to minimize the receiver side distortion within the delay bound requirements, by exploring application layer Position and Value (P-V) diversity as well as the multihop Effective Capacity (EC). We specifically consider image transmission optimization here. First of all, the maximum supportable source traffic rate is identified by exploring the multihop Effective Capacity (EC) model. Furthermore, the optimal source coding rate is selected according to the P-V diversity of multirate media streaming, which significantly increases the decoded media quality. Simulation results show the proposed approach improved media quality significantly compared with traditional approaches under the same QoS requirements.Keywords: Multirate Multimedia Streaming, Effective CapacityMultihop Wireless Mesh Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470