Search results for: Hunting Search Algorithm and Firefly Algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3858

Search results for: Hunting Search Algorithm and Firefly Algorithm.

1788 Eight-State BB84: A C# Simulation

Authors: Liliana Zisu

Abstract:

The first and best known quantum protocol BB84, whose security is unconditional allows the transmission of a key with a length equal to that of the message. This key used with an encryption algorithm leads to an unbreakable cryptographic scheme. Despite advantages the protocol still can be improved in at least two aspects: its efficiency which is of about 50%, only half of the photons transmitted are used to create the encryption key and the second aspect refers to the communication that takes place on the classic channel, as it must be reduced or even eliminated. The paper presents a method that improves the two aspects of the BB84 protocol by using quantum memory and eight states of polarization. The implementation of both the proposed method and the BB84 protocol was done through a C# application.

Keywords: BB84, protocol, quantum cryptography, quantum key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
1787 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: Bilinear systems, state space model, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
1786 Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties

Authors: Mousavian, M. Moghimi Mofrad, M. H. Vakili, D. Ashouri, R. Alizadeh

Abstract:

The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.

Keywords: Neural Network, Net Heating Value, Crude Oil, Experimental, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
1785 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: Expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
1784 Mammogram Image Size Reduction Using 16-8 bit Conversion Technique

Authors: Ayman A. AbuBaker, Rami S.Qahwaji, Musbah J. Aqel, Mohmmad H. Saleh

Abstract:

Two algorithms are proposed to reduce the storage requirements for mammogram images. The input image goes through a shrinking process that converts the 16-bit images to 8-bits by using pixel-depth conversion algorithm followed by enhancement process. The performance of the algorithms is evaluated objectively and subjectively. A 50% reduction in size is obtained with no loss of significant data at the breast region.

Keywords: Breast cancer, Image processing, Image reduction, Mammograms, Image enhancement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1783 Real-Time Vision-based Korean Finger Spelling Recognition System

Authors: Anjin Park, Sungju Yun, Jungwhan Kim, Seungk Min, Keechul Jung

Abstract:

Finger spelling is an art of communicating by signs made with fingers, and has been introduced into sign language to serve as a bridge between the sign language and the verbal language. Previous approaches to finger spelling recognition are classified into two categories: glove-based and vision-based approaches. The glove-based approach is simpler and more accurate recognizing work of hand posture than vision-based, yet the interfaces require the user to wear a cumbersome and carry a load of cables that connected the device to a computer. In contrast, the vision-based approaches provide an attractive alternative to the cumbersome interface, and promise more natural and unobtrusive human-computer interaction. The vision-based approaches generally consist of two steps: hand extraction and recognition, and two steps are processed independently. This paper proposes real-time vision-based Korean finger spelling recognition system by integrating hand extraction into recognition. First, we tentatively detect a hand region using CAMShift algorithm. Then fill factor and aspect ratio estimated by width and height estimated by CAMShift are used to choose candidate from database, which can reduce the number of matching in recognition step. To recognize the finger spelling, we use DTW(dynamic time warping) based on modified chain codes, to be robust to scale and orientation variations. In this procedure, since accurate hand regions, without holes and noises, should be extracted to improve the precision, we use graph cuts algorithm that globally minimize the energy function elegantly expressed by Markov random fields (MRFs). In the experiments, the computational times are less than 130ms, and the times are not related to the number of templates of finger spellings in database, as candidate templates are selected in extraction step.

Keywords: CAMShift, DTW, Graph Cuts, MRF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
1782 Contextual SenSe Model: Word Sense Disambiguation Using Sense and Sense Value of Context Surrounding the Target

Authors: Vishal Raj, Noorhan Abbas

Abstract:

Ambiguity in NLP (Natural Language Processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a method to create an affinity matrix to calculate the affinity between any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an algorithm to create the sense clusters of tokens using affinity matrix under hierarchy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contextual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and challenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.

Keywords: Word Sense Disambiguation, WSD, Contextual SenSe Model, Most Frequent Sense, part of speech, POS, Natural Language Processing, NLP, OOV, out of vocabulary, ELMo, Embeddings from Language Model, BERT, Bidirectional Encoder Representations from Transformers, Word2Vec, lemma_POS, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
1781 Matrix Based Synthesis of EXOR dominated Combinational Logic for Low Power

Authors: Padmanabhan Balasubramanian, C. Hari Narayanan

Abstract:

This paper discusses a new, systematic approach to the synthesis of a NP-hard class of non-regenerative Boolean networks, described by FON[FOFF]={mi}[{Mi}], where for every mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where 'n' represents the number of distinct primary inputs). The method automatically ensures exact minimization for certain important selfdual functions with 2n-1 points in its one-set. The elements meant for grouping are determined from a newly proposed weighted incidence matrix. Then the binary value corresponding to the candidate pair is correlated with the proposed binary value matrix to enable direct synthesis. We recommend algebraic factorization operations as a post processing step to enable reduction in literal count. The algorithm can be implemented in any high level language and achieves best cost optimization for the problem dealt with, irrespective of the number of inputs. For other cases, the method is iterated to subsequently reduce it to a problem of O(n-1), O(n-2),.... and then solved. In addition, it leads to optimal results for problems exhibiting higher degree of adjacency, with a different interpretation of the heuristic, and the results are comparable with other methods. In terms of literal cost, at the technology independent stage, the circuits synthesized using our algorithm enabled net savings over AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of- Products or ESOP forms) and AND-OR-EXOR logic by 45.57%, 41.78% and 41.78% respectively for the various problems. Circuit level simulations were performed for a wide variety of case studies at 3.3V and 2.5V supply to validate the performance of the proposed method and the quality of the resulting synthesized circuits at two different voltage corners. Power estimation was carried out for a 0.35micron TSMC CMOS process technology. In comparison with AOI logic, the proposed method enabled mean savings in power by 42.46%. With respect to AND-EXOR logic, the proposed method yielded power savings to the tune of 31.88%, while in comparison with AND-OR-EXOR level networks; average power savings of 33.23% was obtained.

Keywords: AOI logic, ESOP, AND-OR-EXOR, Incidencematrix, Hamming distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
1780 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1779 Design of Expert System for Search Allergy and Selection of the Skin Tests using CLIPS

Authors: St. Karagiannis, A. I. Dounis, T. Chalastras, P. Tiropanis, D. Papachristos

Abstract:

This work presents the design of an expert system that aims in the procurement of patient medial background and in the search for suitable skin test selections. Skin testing is the tool used most widely to diagnose allergies. The language of expert systems CLIPS is used as a tool of designing. Finally, we present the evaluation of the proposed expert system which was achieved with the import of certain medical cases and the system produced with suitable successful skin tests.

Keywords: Artificial intelligence, expert system - CLIPS, allergy and skin test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
1778 Mining Sequential Patterns Using I-PrefixSpan

Authors: Dhany Saputra, Dayang R. A. Rambli, Oi Mean Foong

Abstract:

In this paper, we propose an improvement of pattern growth-based PrefixSpan algorithm, called I-PrefixSpan. The general idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree framework and separator database to reduce the execution time and memory usage. Thus, with I-PrefixSpan there is no in-memory database stored after index set is constructed. The experimental result shows that using Java 2, this method improves the speed of PrefixSpan up to almost two orders of magnitude as well as the memory usage to more than one order of magnitude.

Keywords: ArrayList, ArrayIntList, minimum support, sequence database, sequential patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
1777 An Exact Solution to Support Vector Mixture

Authors: Monjed Ezzeddinne, Nicolas Lefebvre, Régis Lengellé

Abstract:

This paper presents a new version of the SVM mixture algorithm initially proposed by Kwok for classification and regression problems. For both cases, a slight modification of the mixture model leads to a standard SVM training problem, to the existence of an exact solution and allows the direct use of well known decomposition and working set selection algorithms. Only the regression case is considered in this paper but classification has been addressed in a very similar way. This method has been successfully applied to engine pollutants emission modeling.

Keywords: Identification, Learning systems, Mixture ofExperts, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
1776 Grey Prediction Based Handoff Algorithm

Authors: Seyed Saeed Changiz Rezaei, Babak Hossein Khalaj

Abstract:

As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

Keywords: Cellular network, Grey prediction, Handoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1775 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.

Keywords: Clustering, method, algorithm, hierarchical, survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378
1774 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun

Abstract:

Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.

Keywords: Process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
1773 Ranking Fuzzy Numbers Based on Lexicographical Ordering

Authors: B. Farhadinia

Abstract:

Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.

Keywords: Ranking fuzzy numbers, Lexicographical ordering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
1772 BDD Package Based on Boolean NOR Operation

Authors: M. Raseen, A.Assi, P.W. C. Prasad, A. Harb

Abstract:

Binary Decision Diagrams (BDDs) are useful data structures for symbolic Boolean manipulations. BDDs are used in many tasks in VLSI/CAD, such as equivalence checking, property checking, logic synthesis, and false paths. In this paper we describe a new approach for the realization of a BDD package. To perform manipulations of Boolean functions, the proposed approach does not depend on the recursive synthesis operation of the IF-Then-Else (ITE). Instead of using the ITE operation, the basic synthesis algorithm is done using Boolean NOR operation.

Keywords: Binary Decision Diagram (BDD), ITE Operation, Boolean Function, NOR operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1771 Independent Spanning Trees on Systems-on-chip Hypercubes Routing

Authors: Eduardo Sant'Ana da Silva, Andre Luiz Pires Guedes, Eduardo Todt

Abstract:

Independent spanning trees (ISTs) provide a number of advantages in data broadcasting. One can cite the use in fault tolerance network protocols for distributed computing and bandwidth. However, the problem of constructing multiple ISTs is considered hard for arbitrary graphs. In this paper we present an efficient algorithm to construct ISTs on hypercubes that requires minimum resources to be performed.

Keywords: Hypercube, Independent Spanning Trees, Networks On Chip, Systems On Chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
1770 The Riemann Barycenter Computation and Means of Several Matrices

Authors: Miklos Palfia

Abstract:

An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.

Keywords: Means, matrix means, operator means, geometric mean, Riemannian center of mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
1769 Analysis of Social Network Using Clever Ant Colony Metaphor

Authors: Mohammad Al-Fayoumi, Soumya Banerjee, Jr., P. K. Mahanti

Abstract:

A social network is a set of people or organization or other social entities connected by some form of relationships. Analysis of social network broadly elaborates visual and mathematical representation of that relationship. Web can also be considered as a social network. This paper presents an innovative approach to analyze a social network using a variant of existing ant colony optimization algorithm called as Clever Ant Colony Metaphor. Experiments are performed and interesting findings and observations have been inferred based on the proposed model.

Keywords: Social Network, Ant Colony, Maximum Clique, Sub graph, Clever Ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1768 A Reconfigurable Processing Element Implementation for Matrix Inversion Using Cholesky Decomposition

Authors: Aki Happonen, Adrian Burian, Erwin Hemming

Abstract:

Fixed-point simulation results are used for the performance measure of inverting matrices using a reconfigurable processing element. Matrices are inverted using the Cholesky decomposition algorithm. The reconfigurable processing element is capable of all required mathematical operations. The fixed-point word length analysis is based on simulations of different condition numbers and different matrix sizes.

Keywords: Cholesky Decomposition, Fixed-point, Matrixinversion, Reconfigurable processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1767 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels

Authors: Miloje S. Radenkovic, Tamal Bose

Abstract:

This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.

Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1766 Optimum Performance Measures of Interdependent Queuing System with Controllable Arrival Rates

Authors: S. S. Mishra

Abstract:

In this paper, an attempt is made to compute the total optimal cost of interdependent queuing system with controllable arrival rates as an important performance measure of the system. An example of application has also been presented to exhibit the use of the model. Finally, numerical demonstration based on a computing algorithm and variational effects of the model with the help of the graph have also been presented.

Keywords: Computing, Controllable arrival rate, Optimum performance measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1765 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: Canny pruning, hand recognition, machine learning, skin tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1764 A Dual Method for Solving General Convex Quadratic Programs

Authors: Belkacem Brahmi, Mohand Ouamer Bibi

Abstract:

In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.

Keywords: Convex quadratic programming, dual support methods, active set methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
1763 Scenario Recognition in Modern Building Automation

Authors: Roland Lang, Dietmar Bruckner, Rosemarie Velik, Tobias Deutsch

Abstract:

Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.

Keywords: Building automation, ubiquitous computing, scenariorecognition, surveillance system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1762 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem

Authors: C. E. Nugraheni, L. Abednego

Abstract:

This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as metaheuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.

Keywords: Hyper-heuristics, evolutionary algorithms, production scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414
1761 Robot Cell Planning

Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi

Abstract:

A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.

Keywords: Robotics, Layout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
1760 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems

Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb

Abstract:

This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.

Keywords: AQM, first-order controller, time delay, stability, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1759 Combining Bagging and Additive Regression

Authors: Sotiris B. Kotsiantis

Abstract:

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Keywords: Regressors, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641