Mammogram Image Size Reduction Using 16-8 bit Conversion Technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Mammogram Image Size Reduction Using 16-8 bit Conversion Technique

Authors: Ayman A. AbuBaker, Rami S.Qahwaji, Musbah J. Aqel, Mohmmad H. Saleh

Abstract:

Two algorithms are proposed to reduce the storage requirements for mammogram images. The input image goes through a shrinking process that converts the 16-bit images to 8-bits by using pixel-depth conversion algorithm followed by enhancement process. The performance of the algorithms is evaluated objectively and subjectively. A 50% reduction in size is obtained with no loss of significant data at the breast region.

Keywords: Breast cancer, Image processing, Image reduction, Mammograms, Image enhancement

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060611

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042

References:


[1] A. Aldroubi, M. Unser, and M. Eden" Cardinal spline filters: Stability and convergence to the ideal sinc interpolation", Signal processing, Vol 28, pp. 127-138, 1992.
[2] D. Brzakovic, X. M. Luo, and P. Brzakovic, "An Approach to Automated Detection of Tumors in Mammograms," IEEE Transactions on Medical Imaging, vol. 9, no. 3, pp. 233-241, 1990
[3] D.B. Kopanes, "Breast Imaging"2nd edition. Philadelphia, PA: Lippincott-Raven, 1998.
[4] G. R. Kuduvalli and R. M. Rangayyan, "Performance analysis of reversible image compression techniques for high-resolution digital teleradiology," IEEE Trans. Med. Imag., vol. 11, pp. 430-445, Sept. 1992.
[5] G. S. Maitz, T. S. Chang, J. H. Sumkin, P. W. Wintz, C. M. Johns, M. Ganott, B. L. Holbert, C. M. Hakim, K. M. Harris, D. Gur, and J. M. Herron, "Preliminary clinical evaluation of high-resolution telemammography system," Invest. Radiol., vol. 32, pp. 236-240, Apr. 1997.
[6] H.-P Chan, L.T. Niklason, D.M.Ikeda, K.L. Lam, and D. D. Adler. "Digitizing requirements in mammography: Effects on computer aided detection of micro-calcifications", Med. Phys, Vol.21, pp.1203-1211, July 1994.
[7] J. A. Paker, R. V. Kenyon, and D.E. Troxel," Comparison of interpolating methods for image resampling", IEEE Transaction Medical Images. Vol. M1-2, pp 31-39,1983.
[8] K. Coakley, F. Quintarelli, T. van Doorn, C. Hirst, "Classification of Equivocal Mammograms through Digital Analysis", the breast, vol. 3, pp. 222-226, 1994.
[9] K. Wakabayashi "Evaluation of the effective information preservation method for binary image reduction", System and computers in Japan, 32(7), pp.1-11, 2001.
[10] Monica Penedo, William Pearlman, Pablo Tahoces, Miguel Souto, and Juan Vidal "Region - Based Wavelet Coding Methods for Digital Mammograhy", IEEE Trans. On Medical Imaging, Vol:22, No:19, PP:1288-1295, Oct-2003.
[11] M. Comer, S. Liu, and E. J. Delp, "Statistical Segmentation of Mammograms," Proceedings of the 3rd International Workshop on Digital Mammography, Chicago, pp. 475-478, 1996.
[12] M. L. Giger, F.-F. Yin, K. Doi, C. E. Metz, R. A. Schmidt, and C. J. Vyborny, "Investigation of Methods for the Computerized Detection and Analysis of Mammographic Masses," Proceedings of SPIE, Washington, pp. 183-184, 1990.
[13] M. Unser, A. Aldroubi, and M. Eden, "Enlargement or Reduction of Digital Images with Minimum Loss of Information", IEEE transaction on image processing, 4(3), pp.247-258, 1995.
[14] M. Unser, A. Aldroubi, and E. Eden "Fast B-Spline transforms for continous image representation and interpolation" IEEE Trans. Pattern Anal. Machine Intell. Vol 13, pp. 277-285, 1991.
[15] O.L. Mangasarian, "Breast cancer diagnosis and prognosis via linear programming", Operations Research, vol. 43, No. 4, pp. 570-577, 1995.
[16] R.E. Bird, T.W Wallace, and B.C. Yankaskas, "Analysis of cancer missed at screening mammography" Radiology, Vol.184, pp. 613-617, Sept. 1992.
[17] S. K. Park and R. A. Showengerdt," Image reconstruction by parametric convolution" Computer Vision Graphics, Image processing, Vol 20, pp.258-272, 1983.
[18] R. N. Strickland and H. I. Hahn, "Wavelet Transforms for Detecting Microcalcifications in Mammograms," IEEE Transactions on Medical Imaging, vol. 15, no. 2, pp. 218-229, 1996.
[19] S. Liu and E. J. Delp, "multi-resolution Detection of Stellate Lesions in Mammograms", Proceedings of the IEEE International Conference on Image Processing, Santa Barbara, pp. 109-112, 1997.
[20] S. Parker et al, "Cancer Statistics", Cancer Journal for Clinicians, vol. 47, pp. 5-27, 1997.
[21] V. Rasche, R. Proksa, R. Sinkus, P.Bornet and H. Eggers, "Resampling of data between arbitrary grids using convolution interpolation", IEEE transaction on medical imaging, 18(5), pp.385- 392, 1999.
[22] Mercury computer system, Inc. "Amira 4.0" http://www.tgs.com/
[23] Tomasz Arod'z, Marcin Kurdziel, Tadeusz Popiela, Erik O. D. Sevre, David A. Yuen, "A 3D Visualization System for Computer-Aided Mammogram Analysis", 2004.
[24] Tomasz Arod'z, Marcin Kurdziel, Tadeusz J. Popiela, Erik O.D. Sevre, David A. Yuen, "Detection of clustered microcalcifications in small field digital mammography", 2006.
[25] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero Simoncelli," Image Quality Assessment: From Error Visibility to Structural Similarity", IEEE Trnas on Image Processing, Vol.13 , No. 4,pp. 600-612, 2004.
[26] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero Simoncelli, Matlab source file, http//www.cns.nyu.edu/~lcv/ssim/.
[27] J. A. Parken, R.V. Kenyon, and D.E. Troxel, "Comparison of interpolating methods for image resampling", IEEE Trans Medical Imaging, Vol.2, pp. 31-39, 1983.
[28] W. K. Pratt," Digital image processing", Johm Willey &sons inc, 1991.
[29] Cheng-Soon Chuah, Jin-Jang Leou, An adaptive image interpolation algorithm for image/video processing, Pattern Recognition 34. pp: 2383-2393, 2001.
[30] H.S. Hou, H.C. Andrews, "Cubic splines for image interpolation and digital altering", IEEE Trans. Acoust. Speech Signal Process. ASSP-26 (6). PP: 508-517, 1978.
[31] R.R. Schultz, R.L. Stevenson, A Bayesian approach to image expansion for improved definition, IEEE Trans. Image Process. 3 (3). PP: 233-242, 1994.
[32] R.Y. Tsai, T.S. Huang, "Multiframe image restoration and registration", in: R.Y. Tsai, T.S. Huang (Eds.), Advance in Computer Vision and Image Processing, Vol. 1, JAI Press, Greenwich, CT, pp. 317-339, 1984.
[33] A.J. Patti, M.I. Sezan, A.M. Tekalp, "High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying blur", Proceedings of the IEEE International Conference on Image Processing, Austin, TX, pp. 343-347, 1994.
[34] R.G.Keys, "Cubic convolution interpolation for digital image processing", IEEE Trans. Acoustics Speech and Signal Processing, Vol.29, pp.1153-1160, 1981.