**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31482

##### An Exact Solution to Support Vector Mixture

**Authors:**
Monjed Ezzeddinne,
Nicolas Lefebvre,
Régis Lengellé

**Abstract:**

**Keywords:**
Identification,
Learning systems,
Mixture ofExperts,
Support Vector Machines.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1081245

**References:**

[1] Collobert R. and Bengio S., SVMTorch: "Support Vector Machine for Large-Scale Regression and Classification Problems", Journal of Machine Learning Research, 1: pp. 143-160, 2001.

[2] Genton M., "Classes of Kernels for Machine Learning: A statistics Perspective", Journal of Machine Learning Research 2: pp. 299-312, 2001.

[3] Jacobs R., Jordan M., Nowlan S., and Hinton G., "Adaptative Mixtures of Local Experts", Neural Computation, 3(1): pp. 79 -87, 1991.

[4] Joachims T., Making "Large-Scale SVM Learning Practical", Advances in Kernel Methods - Support Vector Learning, ch. 11, pp. 169-184 , MIT Press, 1999.

[5] Jordan M., Jacobs R., "Hierarchical Mixtures of Experts and the EM Algorithm", Neural Computation, 6(2): pp. 181-214, 1994.

[6] Kwok J., "Support Vector Mixture for Classification and Regression Problems", Proceedings of the International Conference on Pattern Recognition, pp. 255-258, 1998.

[7] Lin C. J., "On the Convergence of the Decomposition Method for Support Vector Machines", IEEE Transactions on Neural Networks, 12 (2001), pp. 1288-1298.

[8] Osuna E., Freund R. and Girosi F., "An Improved Training Algorithm for Support Vector Machines", Proceedings of IEEE Workshop on Neural Networks for Signal Processing pp. 276-285, 1997.

[9] Vapnik V., The Nature of Statistical Learning Theory, Springer, New York, 1995.

[10] Vapnik V., Statistical Learning Theory, A Wiley-Interscience Publication, New York, 1998.