Search results for: Energy Production & Consumption.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5033

Search results for: Energy Production & Consumption.

2963 Volatile Organochlorine Compounds Emitted by Temperate Coniferous Forests

Authors: Jana Doležalová, Josef Holík, Zdeněk Wimmer, Sándor T. Forczek

Abstract:

Chlorine is one of the most abundant elements in nature, which undergoes a complex biogeochemical cycle. Chlorine bound in some substances is partly responsible for atmospheric ozone depletion and contamination of some ecosystems. As due to international regulations anthropogenic burden of volatile organochlorines (VOCls) in atmosphere decreases, natural sources (plants, soil, abiotic formation) are expected to dominate VOCl production in the near future. Examples of plant VOCl production are methyl chloride, and bromide emission from (sub)tropical ferns, chloroform, 1,1,1-trichloroethane and tetrachloromethane emission from temperate forest fern and moss. Temperate forests are found to emit in addition to the previous compounds tetrachloroethene, and brominated volatile compounds. VOCls can be taken up and further metabolized in plants. The aim of this work is to identify and quantitatively analyze the formed VOCls in temperate forest ecosystems by a cryofocusing/GC-ECD detection method, hence filling a gap of knowledge in the biogeochemical cycle of chlorine.

Keywords: chloroform, cryofocusing-GC-ECD, ozonedepletion, volatile organochlorines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
2962 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
2961 Pilot-scale Study of Horizontal Anaerobic Digester for Biogas Production using Food Waste

Authors: Yongsei Lee, Hyunsu Park, Youngseob Yu, Heechan Yoo, Sungin Yoo

Abstract:

A horizontal anaerobic digester was developed and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal digester. A mixer of the horizontal digester was designed to easily remove the sediment in the bottom and scum layers on surface in the digester. Experimental result for 120 days of operation of the pilot plant showed a high removal efficiency of 81.2% for organic substance and high stability during the whole operation period were acquired. Also food waste was treated at high organic loading rates over 4 kg•VS/m3∙day and a methane gas production rate of 0.62 m3/kg•VSremoved was accomplished. The biological desulfurization equipment inside the horizontal digester was proven to be an economic and effective method to reduce the biogas desulfurization cost by removing hydrogen sulfide more than 90% without external desulfurization equipments.

Keywords: Biogas, Biological desulfurization, Horizontal anaerobic digester, Korean food waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3071
2960 Profit Optimization for Solar Plant Electricity Production

Authors: Fl. Loury, P. Sablonière

Abstract:

In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.

Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.

Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
2959 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: Drying time, lyophilization, mango, vacuum induced freezing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
2958 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies

Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan

Abstract:

Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.

Keywords: Economic wide impact, energy models, environmental policy instruments, mitigating CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
2957 The Advantages of Integration for Social Systems – Evidence from the Automobile Industry

Authors: Waldemiro Francisco Sorte Junior

Abstract:

The Japanese integrative approach to social systems can be observed in supply chain management as well as in the relationship between public and private sectors. Both the Lean Production System and the Developmental State Model are characterized by efforts towards the achievement of mutual goals, resulting in initiatives for capacity building which emphasize the system level. In Brazil, although organizations undertake efforts to build capabilities at the individual and organizational levels, the system level is being neglected. Fieldwork data confirmed the findings of other studies in terms of the lack of integration in supply chain management in the Brazilian automobile industry. Moreover, due to the absence of an active role of the Brazilian state in its relationship with the private sector, automakers are not fully exploiting the opportunities in the domestic and regional markets. For promoting a higher level of economic growth as well as to increase the degree of spill-over of technologies and techniques, a more integrative approach is needed.

Keywords: Integration, Lean Production System, DevelopmentalState Model, Brazilian automobile industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
2956 Haematology and Serum Biochemical Profile of Laying Chickens Reared on Deep Litter System with or without Access to Grass or Legume Pasture under Humid Tropical Climate

Authors: E. Oke, A. O. Ladokun, J. O. Daramola, O. M. Onagbesan

Abstract:

There has been a growing interest on the effects of access to pasture on poultry health status. However, there is a paucity of data on the relative benefits of grass and legume pastures. An experiment was conducted to determine the effects of rearing systems {deep litter system (DL), deep litter with access to legumes (LP) or grass (GP) pastures} haematology and serum chemistry of ISA Brown layers. The study involved the use of two hundred and forty 12 weeks old pullets. The birds were reared until 60 weeks of age. Eighty birds were assigned to each treatment; each treatment had four replicates of 20 birds each. Blood samples (2.5 ml) were collected from the wing vein of two birds per replicate and serum chemistry and haematological parameters were determined. The results showed that there were no significant differences between treatments in all the parameters considered at 18 weeks of age. At 24 weeks old, the percentage of heterophyl (HET) in DL and LP were similar but higher than that of GP. The ratio of H:L was higher (P<0.05) in DL than those of LP and GP while LP and GP were comparable. At week 38 of age, the percentage of PCV in the birds in LP and GP were similar but the birds in DL had significantly lower level than that of GP. In the early production phase, serum total protein of the birds in LP was similar to that of GP but higher (P<0.05) than that of DL. At the peak production phase (week 38), the total protein in GP and DL were similar but significantly lower than that of LP. The albumin level in LP was greater (P<0.05) than GP but similar to that of DL. In the late production phase, the total protein in LP was significantly higher than that of DL but similar to that of GP. It was concluded that rearing chickens in either grass or legume pasture did not have deleterious effects on the health of laying chickens but improved some parameters including blood protein and HET/lymphocyte.

Keywords: Rearing systems, Stylosanthes, Cynodon serum chemistry, haematology, hen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2955 Comparison of an Interior Mounted Permanent Magnet Synchronous Generator with a Synchronous Reluctance Generator for a Wind Application

Authors: Poopak Roshanfekr, Torbjörn Thiringer, Sonja Lundmark, Mikael Alatalo

Abstract:

This article presents a performance comparison of an interior mounted permanent magnet synchronous generator (IPMSG) with a synchronous reluctance generator (SynRG) with the same size for a wind application. It is found that using the same geometrical dimensions, a SynRG can convert 74 % of the power that an IPMSG can convert, while it has 80% of the IPMSG weight. Moreover it is found that the efficieny for the IMPSG is 99% at rated power compared to 98.7% for the SynRG.

Keywords: Interior mounted permanent magnet synchronous generator (IPMSG), synchronous reluctance generator (SynRG), wind energy, annual energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
2954 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: Smart grids, wind turbine, modeling, renewable energy, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
2953 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: Semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
2952 The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for

Authors: Nisa Rachmania Mubarik, Tedja Imas, Aris Tri Wahyudi , Triadiati , Suharyanto, Happy Widiastuti

Abstract:

Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.

Keywords: Bradyrhizobium japonicum, acid-aluminium tolerant mutant, Tanggamus cultivar soybean, acid soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2951 Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades

Authors: Thanasis K. Barlas, Helge A. Madsen

Abstract:

A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R&D project following almost 10 years of innovative research in this field. The full scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the Risø Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the AFS are described. The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed and results of steady, flap step and azimuth control flap cases are presented.

Keywords: morphing, adaptive, flap, smart blade, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
2950 Life Cycle Datasets for the Ornamental Stone Sector

Authors: Isabella Bianco, Gian Andrea Blengini

Abstract:

The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector.

Keywords: LCA datasets, life cycle assessment, ornamental stone, stone environmental impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
2949 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: Nano-alumina-zirconia, composite catalyst, thin film, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2948 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
2947 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui

Abstract:

Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.

Keywords: Hybrid power system, power generation, solar and wind energy potential, Lower Sindh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2946 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal

Abstract:

In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: Automotive industry, control plan, FMEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2875
2945 Production of WGHs and AFPHs using Protease Combinations at High and Ambient Pressure

Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chul-Jin Kim, Chong-Tai Kim

Abstract:

Wheat gluten hydrolyzates (WGHs) and anchovy fine powder hydrolyzates (AFPHs) were produced at 300 MPa using combinations of Flavourzyme 500MG (F), Alcalase 2.4L (A), Marugoto E (M) and Protamex (P), and then were compared to those produced at ambient pressure concerning the contents of soluble solid (SS), soluble nitrogen and electrophoretic profiles. The contents of SS in the WGHs and AFPHs increased up to 87.2% according to the increase in enzyme number both at high and ambient pressure. Based on SS content, the optimum enzyme combinations for one-, two-, three- and four-enzyme hydrolysis were determined as F, FA, FAM and FAMP, respectively. Similar trends were found for the contents of total soluble nitrogen (TSN) and TCA-soluble nitrogen (TCASN). The contents of SS, TSN and TCASN in the hydrolyzates together with electrophoretic mobility maps indicates that the high-pressure treatment of this study accelerated protein hydrolysis compared to ambient-pressure treatment.

Keywords: Production, Wheat gluten hydrolyzates, Anchovy fine powder hydrolyzates, Protease combinations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
2944 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen

Abstract:

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: Energy minimization, fracture, graphene, molecular mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
2943 Natural Ventilation as a Design Strategy for Energy Saving

Authors: Zahra Ghiabaklou

Abstract:

Ventilation is a fundamental requirement for occupant health and indoor air quality in buildings. Natural ventilation can be used as a design strategy in free-running buildings to: • Renew indoor air with fresh outside air and lower room temperatures at times when the outdoor air is cooler. • Promote air flow to cool down the building structure (structural cooling). • Promote occupant physiological cooling processes (comfort cooling). This paper focuses on ways in which ventilation can provide the mechanism for heat dissipation and cooling of the building structure..It also discusses use of ventilation as a means of increasing air movement to improve comfort when indoor air temperatures are too high. The main influencing factors and design considerations and quantitative guidelines to help meet the design objectives are also discussed.

Keywords: Natural Ventilation, Sustainable Building, Passive Cooling, Energy Saving

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
2942 Artificial Intelligent (AI) Based Cascade Multi-Level Inverter for Smart Nano Grid

Authors: S. Chatterji, S. L. Shimi

Abstract:

As wind, solar and other clean and green energy sources gain popularity worldwide, engineers are seeking ways to make renewable energy systems more affordable and to integrate them with existing ac power grids. In the present paper an attempt has been made for integrating the PV arrays to the smart nano grid using an artificial intelligent (AI) based solar powered cascade multilevel inverter. The AI based controller switching scheme has been used for improving the power quality by reducing the Total Harmonic Distortion (THD) of the multi-level inverter output voltage.

Keywords: Artificial Intelligent (AI), Solar Powered Multi-level Inverter, Smart nano grid, Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3415
2941 Commercialization of Technologies, Productivity and Problems of Technological Audit in the Russian Economy

Authors: E. A. Tkachenko, E. M. Rogova, A. S. Osipenko

Abstract:

The problems of technological development for the Russian Federation take on special significance in the context of modernization of the production base. The complexity of the position of the Russian economy is that it cannot be attributed fully to developing ones. Russia is a strong industrial power that has gone through the processes of destructive de-industrialization in the conditions of changing its economic and political structure. The need to find ways for re-industrialization is not a unique task for the economies of industrially developed countries. Under the influence of production outsourcing for 20 years, the industrial potential of leading economies of the world was regressed against the backdrop of the ascent of China, a new industrial giant. Therefore, methods, tools, and techniques utilized for industrial renaissance in EU may be used to achieve a technological leap in the Russian Federation, especially since the temporary gap of 5-7 years makes it possible to analyze best practices and use those technological transfer tools that have shown the greatest efficiency. In this article, methods of technological transfer are analyzed, the role of technological audit is justified, and factors are analyzed that influence the successful process of commercialization of technologies.

Keywords: Technological transfer, productivity, technological audit, commercialization of technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
2940 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
2939 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: Construction materials, drop weight impact, impact testing, recycled glass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
2938 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: Organic rankine cycle, regenerative organic rankine cycle, waste heat recovery, Indian industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
2937 Challenges of Sustainable Marine Fishing in Ghana

Authors: Eric K. W. Aikins

Abstract:

Traditionally, Ghana is a marine fishing country. The fishing industry dominated by artisanal marine fishing helps Ghana to meet its fish and protein requirements. Also, it provides employment for most coastal dwellers that depend on fishing as their main economic enterprise. Nonetheless, the marine fishing industry is confronted with challenges that have contributed to a declining fish production in recent past decade. Bad fishing practices and the general limited knowledge on sustainable management of fisheries resources are the limiting factors that affect sustainable fish production and sustainable marine biodiversity management in Ghana. This paper discusses the challenges and strategies for attaining and maintaining sustainable marine fishing in Ghana as well as the state of marine fishing in Ghana. It concludes that an increase in the level of involvement of local fishers in the management of fisheries resources of the country could help local fishers to employ sustainable fisheries resources exploitation methods that could result in an improvement in the spatio-economic development and wellbeing of affected fishing communities in particular and Ghana in general.

Keywords: Pair trawling, sargassum, spatio-economic development, sustainable marine fishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
2936 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, V. Brinzari, B. K. Cho

Abstract:

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: Energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
2935 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić

Abstract:

The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.

Keywords: Crackers, dietary fibers, rheology, sensory properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
2934 Cooperative Data Caching in WSN

Authors: Narottam Chand

Abstract:

Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.

Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757