%0 Journal Article
	%A Natalia A. Salazar and  Erika K. Méndez and  Catalina Álvarez and  Carlos E. Orrego
	%D 2015
	%J International Journal of Biotechnology and Bioengineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 106, 2015
	%T Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing
	%U https://publications.waset.org/pdf/10002640
	%V 106
	%X Lyophilization, also called freeze-drying, is an
important dehydration technique mainly used for pharmaceuticals.
Food industry also uses lyophilization when it is important to retain
most of the nutritional quality, taste, shape and size of dried products
and to extend their shelf life. Vacuum-Induced during freezing cycle
(VI) has been used in order to control ice nucleation and,
consequently, to reduce the time of primary drying cycle of
pharmaceuticals preserving quality properties of the final product.
This procedure has not been applied in freeze drying of foods. The
present work aims to investigate the effect of VI on the lyophilization
drying time, final moisture content, density and reconstitutional
properties of mango (Mangifera indica L.) slices (MS) and mango
pulp-maltodextrin dispersions (MPM) (30% concentration of total
solids). Control samples were run at each freezing rate without using
induced vacuum. The lyophilization endpoint was the same for all
treatments (constant difference between capacitance and Pirani
vacuum gauges). From the experimental results it can be concluded
that at the high freezing rate (0.4°C/min) reduced the overall process
time up to 30% comparing process time required for the control and
VI of the lower freeze rate (0.1°C/min) without affecting the quality
characteristics of the dried product, which yields a reduction in costs
and energy consumption for MS and MPM freeze drying. Controls
and samples treated with VI at freezing rate of 0.4°C/min in MS
showed similar results in moisture and density parameters.
Furthermore, results from MPM dispersion showed favorable values
when VI was applied because dried product with low moisture
content and low density was obtained at shorter process time
compared with the control. There were not found significant
differences between reconstitutional properties (rehydration for MS
and solubility for MPM) of freeze dried mango resulting from
controls, and VI treatments.
	%P 1106 - 1110