Search results for: sol-gel reaction.
436 Electrical Performance of a Solid Oxide Fuel Cell Unit with Non-Uniform Inlet Flow and High Fuel Utilization
Authors: Ping Yuan, Mu-Sheng Chiang, Syu-Fang Liu, Shih-Bin Wang, Ming-Jun Kuo
Abstract:
This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flow are non-uniform. A software package in this study solves two-dimensional, simultaneous, partial differential equations of mass, energy, and electro-chemistry, without considering stack direction variation. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, non-uniform Pattern A will induce more severe happening of non-reaction area in the corner of the fuel exit and the air inlet. This non-reaction area deteriorates the average current density and then deteriorates the electrical performance to –7%.Keywords: Performance, Solid oxide fuel cell, non-uniform, fuelutilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306435 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms
Authors: Pavlo Selyshchev, Samuel Akintunde
Abstract:
A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.
Keywords: Phase formation, Binary systems, Interfacial Reaction, Diffusion, Compound layers, Growth kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761434 An Experimental Design Approach to Determine Effects of The Operating Parameters on The Rate of Ru promoted Ir Carbonylation of Methanol
Authors: Vahid Hosseinpour, Mohammad Kazemini, Alireza Mohammadrezaee
Abstract:
carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R2 values greater than 0.9; confirmeda satisfactory fitness of the experimental and theoretical studies. In other words, the developed model and experimental data obtained passed all diagnostic tests establishing this model as a statistically significant.Keywords: Acetic Acid, Carbonylation of Methanol, Central Composite Design, Experimental Design, Iridium/Ruthenium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662433 Carbon Disulfide Production via Hydrogen Sulfide Methane Reformation
Authors: H. Hosseini, M. Javadi, M. Moghiman, M. H. Ghodsi Rad
Abstract:
Carbon disulfide is widely used for the production of viscose rayon, rubber, and other organic materials and it is a feedstock for the synthesis of sulfuric acid. The objective of this paper is to analyze possibilities for efficient production of CS2 from sour natural gas reformation (H2SMR) (2H2S+CH4 =CS2 +4H2) . Also, the effect of H2S to CH4 feed ratio and reaction temperature on carbon disulfide production is investigated numerically in a reforming reactor. The chemical reaction model is based on an assumed Probability Density Function (PDF) parameterized by the mean and variance of mixture fraction and β-PDF shape. The results show that the major factors influencing CS2 production are reactor temperature. The yield of carbon disulfide increases with increasing H2S to CH4 feed gas ratio (H2S/CH4≤4). Also the yield of C(s) increases with increasing temperature until the temperature reaches to 1000°K, and then due to increase of CS2 production and consumption of C(s), yield of C(s) drops with further increase in the temperature. The predicted CH4 and H2S conversion and yield of carbon disulfide are in good agreement with result of Huang and TRaissi.Keywords: Carbon disulfide, sour natural gas, H2SMR, probability density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5259432 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando
Abstract:
Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.
Keywords: Olive stone, combustion, reaction rate, thermogravimetric analysis, fluidized bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849431 Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain
Authors: Fadilah Fadilah, Rochmadi Rochmadi, Siti Syamsiah, Djagal W. Marseno
Abstract:
Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 oC. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis.Keywords: Degree of hydrolysis, ninhydrin, papain, porang flour, proteinaceous components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276430 The Association of Matrix Metalloproteinase-3 Gene -1612 5A/6A Polymorphism with Susceptibility to Coronary Artery Stenosis in an Iranian Population
Authors: M. Seifi, S. Fallah, M. Firoozrai
Abstract:
Matrix metalloproteinase-3 (MMP3) is key member of the MMP family, and is known to be present in coronary atherosclerotic. Several studies have demonstrated that MMP-3 5A/6A polymorphism modify each transcriptional activity in allele specific manner. We hypothesized that this polymorphism may play a role as risk factor for development of coronary stenosis. The aim of our study was to estimate MMP-3 (5A/6A) gene polymorphism on interindividual variability in risk for coronary stenosis in an Iranian population.DNA was extracted from white blood cells and genotypes were obtained from coronary stenosis cases (n=95) and controls (n=100) by PCR (polymerase chain reaction) and restriction fragment length polymorphism techniques. Significant differences between cases and controls were observed for MMP3 genotype frequencies (X2=199.305, p< 0.001); the 6A allele was less frequently seen in the control group, compared to the disease group (85.79 vs. 78%, 6A/6A+5A/6A vs. 5A/5A, P≤0.001). These data imply the involvement of -1612 5A/6A polymorphism in coronary stenosis, and suggest that probably the 6A/6A MMP-3 genotype is a genetic susceptibility factor for coronary stenosis.Keywords: Coronary artery stenosis, matrixmetalloproteinase-3, polymorphism, polymerase chain reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258429 Ozone Assisted Low Temperature Catalytic Benzene Oxidation over Al2O3, SiO2, AlOOH Supported Ni/Pd Catalytic
Authors: V. Georgiev
Abstract:
Catalytic oxidation of benzene assisted by ozone, on alumina, silica, and boehmite-supported Ni/Pd catalysts was investigated at 353 K to assess the influence of the support on the reaction. Three bimetallic Ni/Pd nanosized samples with loading 4.7% of Ni and 0.17% of Pd supported on SiO2, AlOOH and Al2O3 were synthesized by the extractive-pyrolytic method. The phase composition was characterized by means of XRD and the surface area and pore size were estimated using Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. At the beginning of the reaction, catalysts were significantly deactivated due to the accumulation of intermediates on the catalyst surface and after 60 minutes it turned stable. Ni/Pd/AlOOH catalyst showed the highest steady-state activity in comparison with the Ni/Pd/SiO2 and Ni/Pd/Al2O3 catalysts. Their activity depends on the ozone decomposition potential of the catalysts because of generating oxidizing active species. The sample with the highest ozone decomposition ability which correlated to the surface area of the support oxidizes benzene to the highest extent.
Keywords: Ozone, catalysts, oxidation, Volatile organic compounds, VOCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620428 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
Authors: Dong Xie, Jun Zhao, Yiming Weng
Abstract:
The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488427 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed.
Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625426 Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining
Authors: Candido. R.G., Godoy, G.G., Gonçalves, A.R
Abstract:
To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose.Keywords: cellulose, acid pretreatment, hemicellulose removal, sugarcane bagasse
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4926425 Finite Element Modelling of Log Wall Corner Joints
Authors: R. Kalantari, G. Hafeez
Abstract:
The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.
Keywords: dovetail joint, finite element modelling, log shear walls, standard joint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498424 Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System
Authors: L. N. Corîci, A. E. Frissen, D -J. Van Zoelen, I. F. Eggen, F. Peter, C. M. Davidescu, C. G. Boeriu
Abstract:
Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium source. Immobilization of protease has been achieved by the sol-gel method, using dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) as precursors (unpublished results). In batch production, about 95% of Z-Ala-Phe-NH2 was obtained at 30°C after 24 hours of incubation. Reproducibility of different batches of commercial Alcalase 2.4 L FG preparations was also investigated by evaluating the amidation activity and the entrapment yields in the case of immobilization. A packed-bed reactor (0.68 cm ID, 15.0 cm long) was operated successfully for the continuous synthesis of peptide amides. The immobilized enzyme retained the initial activity over 10 cycles of repeated use in continuous reactor at ambient temperature. At 0.75 mL/min flow rate of the substrate mixture, the total conversion of Z-Ala-Phe-OMe was achieved after 5 hours of substrate recycling. The product contained about 90% peptide amide and 10% hydrolysis byproduct.Keywords: packed-bed reactor, peptide amide, protease, sol-gel immobilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690423 Molecular Mechanism of Amino Acid Discrimination for the Editing Reaction of E.coli Leucyl-tRNA Synthetase
Authors: Keun Woo Lee, Minky Son, Chanin Park, Ayoung Baek
Abstract:
Certain tRNA synthetases have developed highly accurate molecular machinery to discriminate their cognate amino acids. Those aaRSs achieve their goal via editing reaction in the Connective Polypeptide 1 (CP1). Recently mutagenesis studies have revealed the critical importance of residues in the CP1 domain for editing activity and X-ray structures have shown binding mode of noncognate amino acids in the editing domain. To pursue molecular mechanism for amino acid discrimination, molecular modeling studies were performed. Our results suggest that aaRS bind the noncognate amino acid more tightly than the cognate one. Finally, by comparing binding conformations of the amino acids in three systems, the amino acid binding mode was elucidated and a discrimination mechanism proposed. The results strongly reveal that the conserved threonines are responsible for amino acid discrimination. This is achieved through side chain interactions between T252 and T247/T248 as well as between those threonines and the incoming amino acids.
Keywords: Amino acid discrimination, Binding free energy Leucyl-tRNAsynthetase, Molecular dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645422 Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions
Authors: Camila da Silva, Simone Belorte de Andrade, Vitor Augusto dos Santos Garcia, Vladimir Ferreira Cabral, J. Vladimir Oliveira Lúcio Cardozo-Filho
Abstract:
In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (> 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration.
Keywords: Packed bed reactor, ethyl esters, continuous process, catalyst-free process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297421 The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method
Authors: M. Yildirim, A. S. Kipcak, F. T. Senberber, M. O. Asensio, E. M. Derun, S. Piskin
Abstract:
Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectroscopy. The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8·4H2O) was synthesized as best.Keywords: Hydrothermal synthesis, potassium borate, potassium nitrate, santite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310420 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium
Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid
Abstract:
Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae are promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the quality of biodiesel produced from lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. At the optimum conditions, the highest biodiesel production yield was found to be 82%. The fuel properties of the produced biodiesel, without any separation step, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.Keywords: Biodiesel, fuel standards, lipase, microalgae, Supercritical CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508419 Negative RT-PCR in a Newborn Infected with Zika Virus: A Case Report
Authors: Vallejo Michael, Acuña Edgar, Roa Juan David, Peñuela Rosa, Parra Alejandra, Casallas Daniela, Rodriguez Sheyla
Abstract:
Congenital Zika Virus Syndrome is an entity composed by a variety of birth defects presented in newborns that have been exposed to the Zika Virus during pregnancy. The syndrome characteristic features are severe microcephaly, cerebral tissue abnormalities, ophthalmological abnormalities such as uveitis and chorioretinitis, arthrogryposis, clubfoot deformity and muscular tone abnormalities. The confirmatory test is the Reverse transcription polymerase chain reaction (RT-PCR) associated to the physical findings. Here we present the case of a newborn with microcephaly whose mother presented a confirmed Zika Virus infection during the third trimester of pregnancy, despite of the evident findings and the history of Zika infection the RT-PCR in amniotic and cerebrospinal fluid of the newborn was negative. RT-PCR has demonstrated a low sensibility in samples with low viral loads, reason why, we propose a clinical diagnosis in patients with clinical history of Zika Virus infection during pregnancy accompanied by evident clinical manifestations of the child.
Keywords: Zika Virus, polymerase chain reaction, microcephaly, amniotic fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668418 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed
Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam
Abstract:
Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established in order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.
Keywords: Computational Fluid Dynamics (CFD) model, Waste Incineration, Municipal Solid Waste (MSW), Fixed Bed, Primary air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718417 Study of the Antimicrobial Activity of Aminoreductone against Pathogenic Bacteria in Comparison with Other Antibiotics
Authors: Vu Thu Trang, Lam Xuan Thanh, Samira Sarter, Tomoko Shimamura, Hiroaki Takeuchi
Abstract:
Antimicrobial activities of aminoreductone (AR), a product formed in the initial stage of Maillard reaction, were screened against pathogenic bacteria. A significant growth inhibition of AR against all 7 isolates (Staphylococcus aureus ATCC® 25923™, Salmonella typhimurium ATCC® 14028™, Bacillus cereus ATCC® 13061™, Bacillus subtilis ATCC® 11774™, Escherichia coli ATCC® 25922™, Enterococcus faecalis ATCC® 29212™, Listeria innocua ATCC® 33090™) were observed by the standard disc diffusion methods. The inhibition zone for each isolate by AR (2.5 mg) ranged from 15±0mm to 28.3±0.4mm in diameter. The minimum inhibitory concentration (MIC) of AR ranging from 20mM to 26mM was proven in the 7 isolates tested. AR also showed the similar effect of growth inhibition in comparison with antibiotics frequently used for the treatment of infections bacteria, such as amikacin, ciprofloxacin, meropennem and levofloxacin. The results indicated that foods containing AR are valuable sources of bioactive compounds towards pathogenic bacteria.
Keywords: Pathogenic bacteria, aminoreductone, Maillard reaction, antimicrobial activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304416 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water
Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün
Abstract:
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052415 Fenton’s Oxidation as Post-Treatment of a Mature Municipal Landfill Leachate
Authors: Susana Cortez, Pilar Teixeira, Rosário Oliveira, Manuel Mota
Abstract:
Mature landfill leachates contain some macromolecular organic substances that are resistant to biological degradation. Recently, Fenton-s oxidation has been investigated for chemical treatment or pre-treatment of mature landfill leachates. The aim of this study was to reduce the recalcitrant organic load still remaining after the complete treatment of a mature landfill leachate by Fenton-s oxidation post-treatment. The effect of various parameters such as H2O2 to Fe2+ molar ratio, dosage of Fe2+ reagent, initial pH, reaction time and initial chemical oxygen demand (COD) strength, that have an important role on the oxidation, was analysed. A molar ratio H2O2/Fe2+ = 3, a Fe2+ dosage of 4 mmol·L-1, pH 3, and a reaction time of 40 min were found to achieve better oxidation performances. At these favorable conditions, COD removal efficiency was 60.9% and 31.1% for initial COD of 93 and 743 mg·L-1 respectively (diluted and non diluted leachate). Fenton-s oxidation also presented good results for color removal. In spite of being extremely difficult to treat this leachate, the above results seem rather encouraging on the application of Fenton-s oxidation.
Keywords: Fenton's oxidation, mature landfill leachate, recalcitrant organic matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717414 Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production
Authors: Jhalique Jane R. Fojas, Ernesto J. Del Rosario
Abstract:
The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.Keywords: Acid pretreatment, bioethanol, biomass, cogon grass, fermentation, lignocellylose, SSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3891413 The Influence of using Compost Leachate on Soil Reaction
Authors: Ali Gholami, Shahram Ahmadi
Abstract:
In the area where the high quality water is not available, unconventional water sources are used to irrigate. Household leachate is one of the sources which are used in dry and semi dry areas in order to water the barer trees and plants. It meets the plants needs and also has some effects on the soil, but at the same time it might cause some problems as well. This study in order to evaluate the effect of using Compost leachate on the density of soil iron in form of a statistical pattern called ''Split Plot'' by using two main treatments, one subsidiary treatment and three repetitions of the pattern in a three month period. The main N treatments include: irrigation using well water as a blank treatments and the main I treatments include: irrigation using leachate and well water concurrently. Some subsidiary treatments were DI (Drop Irrigation) and SDI (Sub Drop Irrigation). Then in the established plots, 36 biannual pine and cypress shrubs were randomly grown. Two months later the treatment begins. The results revealed that there was a significant variation between the main treatment and the instance regarding pH decline in the soil which was related to the amount of leachate injected into the soil. After some time and using leachate the pH level fell, as much as 0.46 and also increased due to the great amounts of leachate. The underneath drop irrigation ends in better results than sub drop irrigation since it keeps the soil texture fixed.Keywords: Compost Leachate, Drop irrigation, Soil Reaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924412 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose
Authors: N. Zanganeh, M. Zabet
Abstract:
Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first. Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.
Keywords: Ethanol, lactose, lactulose syrup, purification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121411 Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures
Authors: Shyh-Ming Chern, Wei-Ling Lin
Abstract:
Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa.Keywords: Ethanol, gasification, lignin, supercritical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081410 Method Development and Validation for the Determination of Cefixime in Pure and Commercial Dosage Forms by Specrophotometry
Authors: S. N. H. Azmi, B. Iqbal, J. K. Al Mamari, K. A. Al Hattali, W. N. Al Hadhrami
Abstract:
A simple, accurate and precise direct spectrophotometric method has been developed for the determination of cefixime in tablets and capsules. The method is based on the reaction of cefixime with a mixture of potassium iodide and potassium iodate to form yellow coloured product in ethanol-distilled water medium at room temperature which absorbed maximally at 352 nm. The factors affecting the reaction product were carefully studied and optimized. The validation parameters based on International Conference on Harmonisation (ICH, USA) guidelines were followed. The effect of common excipients used as additives has been tested and the tolerance limit was calculated for the determination of cefixime. Beer’s law is obeyed in the concentration range of 4 – 24 ug mL-1 with apparent molar absorptivity of 1.52 × 104 L mol-1cm-1 and Sandell’s sensitivity of 0.033 ug/cm2/ 0.001 absorbance unit. The limits of detection and quantitation for the proposed method are 0.32 and 1.06 ug mL-1, respectively. The proposed method has been successfully applied for the determination of cefixime in pharmaceutical formulations. The results obtained by the proposed method were statistically compared with the reference method using t- and F- values and found no significant difference between the two methods. The proposed method can be used as an alternate method for routine quality control analysis of cefixime in pharmaceutical formulations.
Keywords: Spectrophotometry, cefixime, validation, pharmaceutical formulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163409 Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water
Authors: Ekin Kıpçak, Yağmur Karakuş, Mesut Akgün
Abstract:
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water.
Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water.
In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.
Keywords: 2-Propanol, Gasification, Ru/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131408 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests
Authors: Nacim Khelil, Amar Kahil, Said Boukais
Abstract:
The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.
Keywords: Compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573407 Novel Trends in Manufacturing Systems with View on Implementation Possibilities of Intelligent Automation
Authors: Roman Ružarovský, Radovan Holubek, Peter Košťál
Abstract:
The current trend of increasing quality and demands of the final product is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. The intelligent manufacturing paradigm includes a new approach to production system structure design. Intelligent behaviors are based on the monitoring of important parameters of system and its environment. The flexible reaction to changes. The realization and utilization of this design paradigm as an "intelligent manufacturing system" enables the flexible system reaction to production requirement as soon as environmental changes too. Results of these flexible reactions are a smaller layout space, be decreasing of production and investment costs and be increasing of productivity. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.
Keywords: Sensory equipment, intelligent manufacturing systems, manufacturing process, control system, smart automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021