Search results for: soil classification.
1773 The Effects of Soil Chemical Characteristics on Accumulation of Native Selenium by Zea mays Grains in Maize Belt in Kenya
Authors: S. B. Otieno, T. S. Jayne, M. Muyanga
Abstract:
Selenium is an-antioxidant which is important for human health enters food chain through crops. In Kenya Zea mays is consumed by 96% of population hence is a cheap and convenient method to provide selenium to large number of population. Several soil factors are known to have antagonistic effects on selenium speciation hence the uptake by Zea mays. There are no studies in Kenya that has been done to determine the effects of soil characteristics (pH, Tcarbon, CEC, Eh) affect accumulation of selenium in Zea mays grains in Maize Belt in Kenya. About 100 Zea mays grain samples together with 100 soil samples were collected from the study site put in separate labeled Ziplocs and were transported to laboratories at room temperature for analysis. Maize grains were analyzed for selenium while soil samples were analyzed for pH, Cat Ion Exchange Capacity, total carbon, and electrical conductivity. The mean selenium in Zea mays grains varied from 1.82 ± 0.76 mg/Kg to 11±0.86 mg/Kg. There was no significant difference between selenium levels between different grain batches {χ (Df =76) = 26.04 P= 1.00} The pH levels varied from 5.43± 0.58 to 5.85± 0.32. No significant correlations between selenium in grains and soil pH (Pearson’s correlations = - 0.143), and between selenium levels in grains and the four (pH, Tcarbon, CEC, Eh) soil chemical characteristics {F (4,91) = 0.721 p = 0.579} was observed. It can be concluded that the soil chemical characteristics in the study site did not significantly affect the accumulation of native selenium in Zea mays grains.Keywords: Maize, native, soil, selenium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391772 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.
Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31131771 Applications of Genetic Programming in Data Mining
Authors: Saleh Mesbah Elkaffas, Ahmed A. Toony
Abstract:
This paper details the application of a genetic programming framework for induction of useful classification rules from a database of income statements, balance sheets, and cash flow statements for North American public companies. Potentially interesting classification rules are discovered. Anomalies in the discovery process merit further investigation of the application of genetic programming to the dataset for the problem domain.Keywords: Genetic programming, data mining classification rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441770 Fusion of Colour and Depth Information to Enhance Wound Tissue Classification
Authors: Darren Thompson, Philip Morrow, Bryan Scotney, John Winder
Abstract:
Patients with diabetes are susceptible to chronic foot wounds which may be difficult to manage and slow to heal. Diagnosis and treatment currently rely on the subjective judgement of experienced professionals. An objective method of tissue assessment is required. In this paper, a data fusion approach was taken to wound tissue classification. The supervised Maximum Likelihood and unsupervised Multi-Modal Expectation Maximisation algorithms were used to classify tissues within simulated wound models by weighting the contributions of both colour and 3D depth information. It was found that, at low weightings, depth information could show significant improvements in classification accuracy when compared to classification by colour alone, particularly when using the maximum likelihood method. However, larger weightings were found to have an entirely negative effect on accuracy.Keywords: Classification, data fusion, diabetic foot, stereophotogrammetry, tissue colour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101769 Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture
Authors: Rachel Bardy Prado, Vinícius de Melo Benites, José Carlos Polidoro, Carlos Eduardo Gonçalves, Alexey Naumov
Abstract:
Most agricultural crops cultivated in Brazil are highly nutrient demanding. Brazilian soils are generally acidic with low base saturation and available nutrients. Demand for fertilizer application has increased because the national agricultural sector expansion. To improve productivity without environmental impact, there is the need for the utilization of novel procedures and techniques to optimize fertilizer application. This includes the digital soil mapping and GIS application applied to mapping in different scales. This paper is based on research, realized during 2005 to 2010 by Brazilian Corporation for Agricultural Research (EMBRAPA) and its partners. The purpose was to map soil fertility in national and regional scales. A soil profile data set in national scale (1:5,000,000) was constructed from the soil archives of Embrapa Soils, Rio de Janeiro and in the regional scale (1:250,000) from COMIGO Cooperative soil data set, Rio Verde, Brazil. The mapping was doing using ArcGIS 9.1 tools from ESRI.Keywords: agricultural sustainability, fertilizer optimization, GIS, soil attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26181768 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum
Authors: Adnan F. Sheikh, Fayaz A. Mir
Abstract:
After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.
Keywords: Comprehensive flood management programme, dredge soil, strength characteristics, flood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871767 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.Keywords: Politics, personality traits, LIWC, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21621766 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers is relevant in multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.
Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531765 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11461764 Classification and Analysis of Risks in Software Engineering
Authors: Hooman Hoodat, Hassan Rashidi
Abstract:
Despite various methods that exist in software risk management, software projects have a high rate of failure. When complexity and size of the projects are increased, managing software development becomes more difficult. In these projects the need for more analysis and risk assessment is vital. In this paper, a classification for software risks is specified. Then relations between these risks using risk tree structure are presented. Analysis and assessment of these risks are done using probabilistic calculations. This analysis helps qualitative and quantitative assessment of risk of failure. Moreover it can help software risk management process. This classification and risk tree structure can apply to some software tools.
Keywords: Risk analysis, risk assessment, risk classification, risk tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90301763 Exons and Introns Classification in Human and Other Organisms
Authors: Benjamin Y. M. Kwan, Jennifer Y. Y. Kwan, Hon Keung Kwan
Abstract:
In the paper, the relative performances on spectral classification of short exon and intron sequences of the human and eleven model organisms is studied. In the simulations, all combinations of sixteen one-sequence numerical representations, four threshold values, and four window lengths are considered. Sequences of 150-base length are chosen and for each organism, a total of 16,000 sequences are used for training and testing. Results indicate that an appropriate combination of one-sequence numerical representation, threshold value, and window length is essential for arriving at top spectral classification results. For fixed-length sequences, the precisions on exon and intron classification obtained for different organisms are not the same because of their genomic differences. In general, precision increases as sequence length increases.Keywords: Exons and introns classification, Human genome, Model organism genome, Spectral analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621762 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification
Authors: Mahesh Pal
Abstract:
This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351761 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads
Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad
Abstract:
Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.Keywords: Reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25931760 Engineering Geological Characteristics of Soil Materials, East Nile Delta, Egypt
Authors: A. I. M. Ismail, N. Ryden
Abstract:
This paper is concerned with the study of mineralogy and engineering characteristics of soil materials derived from the eastern part of Nile Delta. The clay minerals of the studied soil by using X- ray diffraction are mainly illite (average 72.6 %) and kaolinite (average 2.6 %), expandable portion in illite-smectite mixed layer (average 7 %). Smectite is more abundant in fluviatile clays, whereas kaolinite is more abundant in lagoonal clays. On the other hand, illite and illite-smectite are more abundant in marine clays. The geotechnical results show that the soil under study consists mainly of about 0.3 % gravel, 5 % sand, 51.5 % silt and 42.2 % clay in average. The average shrinkage limit attains 11 % whereas the average value of the plasticity index is 23.4 %. The free swelling ranges from 40 % to 75 % and has a value of 55 % giving an indication about the inadequacy of such soil under foundations. From a construction point of view, the soil under investigation poses many problems even under light foundations due to the swelling and shrinkage. Such swelling and shrinkage is due to the high content of soil materials in the expandable clay minerals of illite and smectite. Based on the results of the present and earlier studies, trial application of soil stabilisation is recommended.Keywords: Engineering Geological Investigations, Nile Delta, Swelling, Shrinkage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37851759 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach
Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh
Abstract:
This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.Keywords: Modeling, Neural Networks, Phenol, Soil media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21431758 Musical Instrument Classification Using Embedded Hidden Markov Models
Authors: Ehsan Amid, Sina Rezaei Aghdam
Abstract:
In this paper, a novel method for recognition of musical instruments in a polyphonic music is presented by using an embedded hidden Markov model (EHMM). EHMM is a doubly embedded HMM structure where each state of the external HMM is an independent HMM. The classification is accomplished for two different internal HMM structures where GMMs are used as likelihood estimators for the internal HMMs. The results are compared to those achieved by an artificial neural network with two hidden layers. Appropriate classification accuracies were achieved both for solo instrument performance and instrument combinations which demonstrates that the new approach outperforms the similar classification methods by means of the dynamic of the signal.Keywords: hidden Markov model (HMM), embedded hidden Markov models (EHMM), MFCC, musical instrument.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911757 Soil Moisture Regulation in Irrigated Agriculture
Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili
Abstract:
Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.
Keywords: Seepage, soil, velocity, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10051756 Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.
Keywords: Nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23781755 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia
Authors: Ali H. Mahfouz, Hossam E. M.Sallam, Abdulwali Wazir, Hamod H. Kharezi
Abstract:
The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.Keywords: Soft foundation soil, bearing capacity, bridge ramps, soil improvement, PCC piles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20141754 Modelling of Soil Erosion by Non Conventional Methods
Authors: Ganesh D. Kale, Sheela N. Vadsola
Abstract:
Soil erosion is the most serious problem faced at global and local level. So planning of soil conservation measures has become prominent agenda in the view of water basin managers. To plan for the soil conservation measures, the information on soil erosion is essential. Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation 1 (RUSLE1or RUSLE) and Modified Universal Soil Loss Equation (MUSLE), RUSLE 1.06, RUSLE1.06c, RUSLE2 are most widely used conventional erosion estimation methods. The essential drawbacks of USLE, RUSLE1 equations are that they are based on average annual values of its parameters and so their applicability to small temporal scale is questionable. Also these equations do not estimate runoff generated soil erosion. So applicability of these equations to estimate runoff generated soil erosion is questionable. Data used in formation of USLE, RUSLE1 equations was plot data so its applicability at greater spatial scale needs some scale correction factors to be induced. On the other hand MUSLE is unsuitable for predicting sediment yield of small and large events. Although the new revised forms of USLE like RUSLE 1.06, RUSLE1.06c and RUSLE2 were land use independent and they have almost cleared all the drawbacks in earlier versions like USLE and RUSLE1, they are based on the regional data of specific area and their applicability to other areas having different climate, soil, land use is questionable. These conventional equations are applicable for sheet and rill erosion and unable to predict gully erosion and spatial pattern of rills. So the research was focused on development of nonconventional (other than conventional) methods of soil erosion estimation. When these non-conventional methods are combined with GIS and RS, gives spatial distribution of soil erosion. In the present paper the review of literature on non- conventional methods of soil erosion estimation supported by GIS and RS is presented.Keywords: Conventional methods, GIS, non-conventionalmethods, remote sensing, soil erosion modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42911753 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271752 Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam
Authors: Faroudja Meziani, Amar Kahil
Abstract:
In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher.
Keywords: Settlement, dynamic analysis, rockfill dam, effect of earthquake, soil dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7871751 An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions
Authors: R. Mallika, V. Saravanan
Abstract:
This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.Keywords: Support vector machines-one against all, cancerclassification, Linear Discriminant analysis, K nearest neighbour, microarray gene expression, gene pair ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25611750 Improvement of Deficient Soils in Nigeria Using Bagasse Ash: A Review
Authors: Musa Alhassan, Alhaji Mohammed Mustapha
Abstract:
Review of studies carried out on the use of bagasse ash for the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizers (cement and lime), the studies generally showed improvement in the geotechnical properties of the soils, either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils, thus suggesting that using this material at large scale level in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria.Keywords: Bagasse ash, Black cotton soil, Deficient soil, Laterite, Soil improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30571749 Study on the Effect of Sulphur, Glucose, Nitrogen and Plant Residues on the Immobilization of Sulphate-S in Soil
Authors: S. Shahsavani, A. Gholami
Abstract:
In order to evaluate the relationship between the sulphur (S), glucose (G), nitrogen (N) and plant residues (st), sulphur immobilization and microbial transformation were monitored in five soil samples from 0-30 cm of Bastam farmers fields of Shahrood area following 11 treatments with different levels of Sulphur (S), glucose (G), N and plant residues (wheat straw) in a randomized block design with three replications and incubated over 20, 45 and 60 days, the immobilization of SO4 -2-S presented as a percentage of that added, was inversely related to its addition rate. Additions of glucose and plant residues increased with the C-to-S ratio of the added amendments, irrespective of their origins (glucose and plant residues). In the presence of C sources (glucose or plant residues). N significantly increased the immobilization of SO4 -2-S, whilst the effect of N was insignificant in the absence of a C amendment. In first few days the amounts of added SO4 -2-S immobilized were linearly correlated with the amounts of added S recovered in the soil microbial biomass. With further incubation the proportions of immobilized SO4 -2-S remaining as biomass-S decreased. Decrease in biomass-S was thought to be due to the conversion of biomass-S into soil organic-S. Glucose addition increased the immobilization (microbial utilization and incorporation into the soil organic matter) of native soil SO4 -2-S. However, N addition enhance the mineralization of soil organic-S, increasing the concentration of SO4 - 2-S in soil.
Keywords: Immobilization, microbial biomass, sulphur, nitrogen, glucose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14801748 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network
Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi
Abstract:
A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.Keywords: Artificial neural networks, cable, fault location andfault classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511747 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.
Keywords: Improvement, shear strength, internal friction angle, sandy soil, rubber chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6691746 Threshold Stress of the Soil Subgrade Evaluation for Highway Formations
Authors: Elsa Eka Putri, N.S.V Kameswara Rao, M. A. Mannan
Abstract:
The objective of this study is to evaluate the threshold stress of the clay with sand subgrade soil. Threshold stress can be defined as the stress level above which cyclic loading leads to excessive deformation and eventual failure. The thickness determination of highways formations using the threshold stress approach is a more realistic assessment of the soil behaviour because it is subjected to repeated loadings from moving vehicles. Threshold stress can be evaluated by plastic strain criterion, which is based on the accumulated plastic strain behaviour during cyclic loadings [1]. Several conditions of the all-round pressure the subgrade soil namely, zero confinement, low all-round pressure and high all-round pressure are investigated. The threshold stresses of various soil conditions are determined. Threshold stress of the soil are 60%, 31% and 38.6% for unconfined partially saturated sample, low effective stress saturated sample, high effective stress saturated sample respectively.Keywords: threshold stress, cyclic loading, pore water pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26021745 Algorithm for Determining the Parameters of a Two-Layer Soil Model
Authors: Adekitan I. Aderibigbe, Fakolujo A. Olaosebikan
Abstract:
The parameters of a two-layer soil can be determined by processing resistivity data obtained from resistivity measurements carried out on the soil of interest. The processing usually entails applying the resistivity data as inputs to an optimisation function. This paper proposes an algorithm which utilises the square error as an optimisation function. Resistivity data from previous works were applied to test the accuracy of the new algorithm developed and the result obtained conforms significantly to results from previous works.
Keywords: Algorithm, earthing, resistivity, two-layer soil-model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33311744 Analysis of Classifications of Unsolicited Bulk Emails
Authors: Jatinderkumar R. Saini, Apurva A. Desai
Abstract:
In recent times, the problem of Unsolicited Bulk Email (UBE) or commonly known as Spam Email, has increased at a tremendous growth rate. We present an analysis of survey based on classifications of UBE in various research works. There are many research instances for classification between spam and non-spam emails but very few research instances are available for classification of spam emails, per se. This paper does not intend to assert some UBE classification to be better than the others nor does it propose any new classification but it bemoans the lack of harmony on number and definition of categories proposed by different researchers. The paper also elaborates on factors like intent of spammer, content of UBE and ambiguity in different categories as proposed in related research works of classifications of UBE.Keywords: E-mail, Scams, Spam Email, Unsolicited Bulk Email(UBE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727