Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam

Authors: Faroudja Meziani, Amar Kahil

Abstract:

In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher.

Keywords: Settlement, dynamic analysis, rockfill dam, effect of earthquake, soil dynamics.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3593118

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801

References:


[1] A. Seddiki, Analyse de la stabilité des pentes sous séisme, m’sila, 2008.
[2] Bakker K.J. (1989), Analysis of groundwater flow through revetments. Proc. 3rd International Symposium on Numerical Models in Geomechanics. Niagara Falls, Canada. pp. 367-374.
[3] C. H. Girsang, A numerical investigation of the seismic response of the aggregate pier foundation system, Vergenie, 2001.
[4] Coulomb, C. A. (1776), Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs, à l'architecture, Mem. Acad. Roy. Div. Sav., vol. 7, p. 343–387.
[5] E. Vincens, Estimation des tassements des sols sous séismes, Lyon, 1999.
[6] Girsang C.H. (2001). A numerical investigation of the seismic response of the aggregate pier foundation system. Thèse, Institut polytechnique de Vergenie.
[7] Ishihara K., Tatsuoka, F., Yasuda S. (1975). Undrained deformation and liquefaction of sand under cyclic stress. Soils and Found. Vol.15 (1), pp 29–44. Doi:10.3208/sandf1972.15.29
[8] J. J. Moreau. Numerical investigation of shear zones in granular materials. In Proceedings of HLRZ-Workshop on Friction Arching Contact Dynamics, 1997.
[9] Konrad J. M. (1990). Minimum undrained strength versus steady-state strength of sands. J. Ceo. Eng. ASCE vol.116 (6), pp 948–963.
[10] P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular flows. Nature, 441(7094):727–730, June 2006. ISSN 0028-0836.
[11] Brinkgereve R.B.J. et Vermeer P.A. « PLAXIS version 8 », DELFT University of Technology and PLAXIS BV, Pays-Bas, 2003. https://www.scribd.com/document/337426698/PLAXIS-V8-tutorial-de-reference-pdf
[12] PLAXIS. (2008). http://docplayer.net/29830260-Plaxis-version-8-dynamics-manual.html
[13] Roscoe K. H., Schofield A. N., Wroth C. P. (1958). On the yielding of soils. Géotechnique vol.8 (1), pp 22–53. Doi:10.1680/geot.1958.8.1.22
[14] X. J. Zhang and M. S. Aggour, Damping determination of sands under different loadings. In 11th World. Conf. Earth. Eng., Acapulco, 1996.