Search results for: geomagnetically induced currents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 696

Search results for: geomagnetically induced currents

516 Shaping the Input Side Current Waveform of a 3-ϕ Rectifier into a Pure Sine Wave

Authors: Sikder Mohammad Faruk, Mir Mofajjal Hossain, Muhibul Haque Bhuyan

Abstract:

In this investigative research paper, we have presented the simulation results of a three-phase rectifier circuit to improve the input side current using the passive filters, such as capacitors and inductors at the output and input terminals of the rectifier circuit respectively. All simulation works were performed in a personal computer using the PSPICE simulator software, which is a virtual circuit design and simulation software package. The output voltages and currents were measured across a resistive load of 1 k. We observed that the output voltage levels, input current wave shapes, harmonic contents through the harmonic spectrum, and total harmonic distortion improved due to the use of such filters.

Keywords: input current wave, three-phase rectifier, passive filter, PSPICE Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
515 An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

Authors: A. A. Penin

Abstract:

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

Keywords: a solar cell generator, I − V characteristic, p − n junction, approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
514 A Design of Electronically Tunable Voltagemode Universal Filter with High Input Impedance

Authors: Surapong Siripongdee, Witthaya Mekhum

Abstract:

This article presents a voltage-mode universal biquadratic filter performing simultaneous 3 standard functions: lowpass, high-pass and band-pass functions, employing differential different current conveyor (DDCC) and current controlled current conveyor (CCCII) as active element. The features of the circuit are that: the quality factor and pole frequency can be tuned independently via the input bias currents: the circuit description is very simple, consisting of 1 DDCC, 2 CCCIIs, 2 electronic resistors and 2 grounded capacitors. Without requiring component matching conditions, the proposed circuit is very appropriate to further develop into an integrated circuit. The PSPICE simulation results are depicted. The given results agree well with the theoretical anticipation.

Keywords: Filter, DDCC, CCCII, Analog circuit, Voltagemode, PSPICE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
513 A Power-Gating Scheme to Reduce Leakage Power for P-type Adiabatic Logic Circuits

Authors: Hong Li, Linfeng Li, Jianping Hu

Abstract:

With rapid technology scaling, the proportion of the static power consumption catches up with dynamic power consumption gradually. To decrease leakage consumption is becoming more and more important in low-power design. This paper presents a power-gating scheme for P-DTGAL (p-type dual transmission gate adiabatic logic) circuits to reduce leakage power dissipations under deep submicron process. The energy dissipations of P-DTGAL circuits with power-gating scheme are investigated in different processes, frequencies and active ratios. BSIM4 model is adopted to reflect the characteristics of the leakage currents. HSPICE simulations show that the leakage loss is greatly reduced by using the P-DTGAL with power-gating techniques.

Keywords: Leakage reduction, low power, deep submicronCMOS circuits, P-type adiabatic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
512 Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO2 Mixture

Authors: Peng Lu, Branimir Radisavljevic, Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti

Abstract:

CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents.

Keywords: CO2 mixture, high voltage circuit breakers, dielectric recovery rate, short-circuit current, mass flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
511 Impact of a Proposed Pier on Tidal Currents:Koa Kood Island, Thailand

Authors: Cherdvong Saengsupavanich

Abstract:

The impact of a proposed pier on tidal current alteration was evaluated. The proposed pier location was in Salad Bay on Koa Kood Island, Trat province, Thailand, and was designed to accommodate passenger ships with a draft of less than 2 m. The study began with collecting necessary data, including bathymetric, water elevation and tidal current characteristics. The impact was assessed using a software package (MIKE21). Although the results showed that the pier would affect the existing current pattern, the change was determined to be insignificant, as the design of the piles for the pier provided sufficient spacing to let the current flow as freely as possible. Consequences of the altered current, such as seabed erosion, water stagnation, sediment deposition and navigational risk were assessed. Environmental mitigation measures might be necessary if the impacts were considered unacceptable.

Keywords: Environmental impact assessment, pier, tidal currentchange, coastal engineering and management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
510 Application of Boost Converter for Ride-through Capability of Adjustable Speed Drives during Sag and Swell Conditions

Authors: S. S. Deswal, Ratna Dahiya, D. K. Jain

Abstract:

Process control and energy conservation are the two primary reasons for using an adjustable speed drive. However, voltage sags are the most important power quality problems facing many commercial and industrial customers. The development of boost converters has raised much excitement and speculation throughout the electric industry. Now utilities are looking to these devices for performance improvement and reliability in a variety of areas. Examples of these include sags, spikes, or transients in supply voltage as well as unbalanced voltages, poor electrical system grounding, and harmonics. In this paper, simulations results are presented for the verification of the proposed boost converter topology. Boost converter provides ride through capability during sag and swell. Further, input currents are near sinusoidal. This eliminates the need of braking resistor also.

Keywords: Adjustable speed drive, power quality, boost converter, ride through capabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
509 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks

Authors: Oguz Ustun, Erdal Bekiroglu

Abstract:

In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM

Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
508 The Solution of the Direct Problem of Electrical Prospecting with Direct Current under Conditions of Ground Surface Relief

Authors: Balgaisha Mukanova, Tolkyn Mirgalikyzy

Abstract:

Theory of interpretation of electromagnetic fields studied in the electrical prospecting with direct current is mainly developed for the case of a horizontal surface observation. However in practice we often have to work in difficult terrain surface. Conducting interpretation without the influence of topography can cause non-existent anomalies on sections. This raises the problem of studying the impact of different shapes of ground surface relief on the results of electrical prospecting's research. This research examines the numerical solutions of the direct problem of electrical prospecting for two-dimensional and three-dimensional media, taking into account the terrain. The problem is solved using the method of integral equations. The density of secondary currents on the relief surface is obtained.

Keywords: Ground surface relief, method of integral equations, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
507 Concrete Sewer Pipe Corrosion Induced by Sulphuric Acid Environment

Authors: Anna Romanova, Mojtaba Mahmoodian, Upul Chandrasekara, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulphuric acid attack is a recognised problem worldwide, which is not only an attribute of countries with hot climate conditions as thought before. The significance of this problem is by far only realised when the pipe collapses causing surface flooding and other severe consequences. To change the existing post-reactive attitude of managing companies, easy to use and robust models are required to be developed which currently lack reliable data to be correctly calibrated. This paper focuses on laboratory experiments of establishing concrete pipe corrosion rate by submerging samples in to 0.5pH sulphuric acid solution for 56 days under 10ºC, 20ºC and 30ºC temperature regimes. The result showed that at very early stage of the corrosion process the samples gained overall mass, at 30ºC the corrosion progressed quicker than for other temperature regimes, however with time the corrosion level for 10ºC and 20ºC regimes tended towards those at 30ºC. Overall, at these conditions the corrosion rates of 10 mm/year, 13,5 mm/year and 17 mm/year were observed.

Keywords: Sewer pipes, concrete corrosion, sulphuric acid, concrete coupons, corrosion rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
506 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels

Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef

Abstract:

This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.

Keywords: Heat and mass transfer, mixed convection, Poiseuille-Rayleigh-Benard flow, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
505 A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators

Authors: Hanny H. Tumbelaka, Masafumi Miyatake

Abstract:

This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.

Keywords: Active Power Filter, MPPT, PV Energy Conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
504 An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Authors: Wei-Soon Ng, Min-Lee Lee, Siew-Ling Hii

Abstract:

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.

Keywords: Bacteria, biocementation, bioclogging, calcite precipitation, soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5950
503 In vitro Cytotoxic and Genotoxic Effects of Arsenic Trioxide on Human Keratinocytes

Authors: H. Bouaziz, M. Sefi, J. de Lapuente, M. Borras, N. Zeghal

Abstract:

Although, arsenic trioxide has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by arsenic trioxide in human keratinocytes (HaCaT) using the MTT [3-(4, 5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. Human keratinocytes were treated with different doses of arsenic trioxide for 4 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that arsenic trioxide significantly reduced the viability of HaCaT cells in a dose-dependent manner, showing an IC50 value of 34.18 ± 0.6 μM. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HaCaT cells associated with arsenic trioxide exposure. We observed a significant increase in comet tail length and tail moment, showing an evidence of arsenic trioxide -induced genotoxic damage in HaCaT cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by arsenic.

Keywords: Arsenic trioxide, cytotoxixity, genotoxicity, HaCaT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
502 Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses

Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian

Abstract:

Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.

Keywords: Nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
501 Inferring the Dynamics of “Hidden“ Neurons from Electrophysiological Recordings

Authors: Valeri A. Makarov, Nazareth P. Castellanos

Abstract:

Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved “hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons “chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb.

Keywords: Integrate and fire neuron, neural network models, spike trains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
500 Protein Profiling in Alanine Aminotransferase Induced Patient cohort using Acetaminophen

Authors: Gry M, Bergström J, Lengquist J, Lindberg J, Drobin K, Schwenk J, Nilsson P, Schuppe-Koistinen I.

Abstract:

Sensitive and predictive DILI (Drug Induced Liver Injury) biomarkers are needed in drug R&D to improve early detection of hepatotoxicity. The discovery of DILI biomarkers that demonstrate the predictive power to identify individuals at risk to DILI would represent a major advance in the development of personalized healthcare approaches. In this healthy volunteer acetaminophen study (4g/day for 7 days, with 3 monitored nontreatment days before and 4 after), 450 serum samples from 32 subjects were analyzed using protein profiling by antibody suspension bead arrays. Multiparallel protein profiles were generated using a DILI target protein array with 300 antibodies, where the antibodies were selected based on previous literature findings of putative DILI biomarkers and a screening process using pre dose samples from the same cohort. Of the 32 subjects, 16 were found to develop an elevated ALT value (2Xbaseline, responders). Using the plasma profiling approach together with multivariate statistical analysis some novel findings linked to lipid metabolism were found and more important, endogenous protein profiles in baseline samples (prior to treatment) with predictive power for ALT elevations were identified.

Keywords: DILI, Plasma profiling, PLSDA, Randomforest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
499 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers

Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo

Abstract:

This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with the serpentine channel of the same overall channel length. From the results, we can find the following trends. When convection dominates fluid mixing, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller centerline radius is better than that of a micromixer consisting of major segment repeating units with a larger centerline radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.

Keywords: Microfluidics, mixing, non-Newtonian fluids, curved channel, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
498 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents

Authors: Düzgün Akmaz, Hüseyin Erişti

Abstract:

In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.

Keywords: Harmonics, Harmonic compensation, Parallel active power filters, Power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288
497 Characterization of the Microbial Induced Carbonate Precipitation Technique as a Biological Cementing Agent for Sand Deposits

Authors: Sameh Abu El-Soud, Zahra Zayed, Safwan Khedr, Adel M. Belal

Abstract:

The population increase in Egypt is urging for horizontal land development which became a demand to allow the benefit of different natural resources and expand from the narrow Nile valley. However, this development is facing challenges preventing land development and agriculture development. Desertification and moving sand dunes in the west sector of Egypt are considered the major obstacle that is blocking the ideal land use and development. In the proposed research, the sandy soil is treated biologically using Bacillus pasteurii bacteria as these bacteria have the ability to bond the sand partials to change its state of loose sand to cemented sand, which reduces the moving ability of the sand dunes. The procedure of implementing the Microbial Induced Carbonate Precipitation Technique (MICP) technique is examined, and the different factors affecting on this process such as the medium of bacteria sample preparation, the optical density (OD600), the reactant concentration, injection rates and intervals are highlighted. Based on the findings of the MICP treatment for sandy soil, conclusions and future recommendations are reached.

Keywords: Soil stabilization, biological treatment, MICP, sand cementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
496 LabVIEW with Fuzzy Logic Controller Simulation Panel for Condition Monitoring of Oil and Dry Type Transformer

Authors: N. A. Muhamad, S.A.M. Ali

Abstract:

Condition monitoring of electrical power equipment has attracted considerable attention for many years. The aim of this paper is to use Labview with Fuzzy Logic controller to build a simulation system to diagnose transformer faults and monitor its condition. The front panel of the system was designed using LabVIEW to enable computer to act as customer-designed instrument. The dissolved gas-in-oil analysis (DGA) method was used as technique for oil type transformer diagnosis; meanwhile terminal voltages and currents analysis method was used for dry type transformer. Fuzzy Logic was used as expert system that assesses all information keyed in at the front panel to diagnose and predict the condition of the transformer. The outcome of the Fuzzy Logic interpretation will be displayed at front panel of LabVIEW to show the user the conditions of the transformer at any time.

Keywords: LabVIEW, Fuzzy Logic, condition monitoring, oiltransformer, dry transformer, DGA, terminal values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
495 Flood-Induced River Disruption: Geomorphic Imprints and Topographic Effects in Kelantan River Catchment from Kemubu to Kuala Besar, Kelantan, Malaysia

Authors: Mohamad Muqtada Ali Khan, Nor Ashikin Shaari, Donny Adriansyah Bin Nazaruddin, Hafzan Eva Bt Mansoor

Abstract:

Floods play a key role in landform evolution of an area. This process is likely to alter the topography of the earth’s surface. The present study area, Kota Bharu is very prone to floods extends from upstream of Kelantan River near Kemubu to the downstream area near Kuala Besar. These flood events which occur every year in the study area exhibit a strong bearing on river morphological set-up. In the present study, three satellite imageries of different time periods have been used to manifest the post-flood landform changes. The pre-processing of the images such as subset, geometric corrections and atmospheric corrections were carried-out using ENVI 4.5 followed by the analysis processes. Twenty sets of cross sections were plotted using software Erdas 9.2, ERDAS and ArcGis 10 for the all three images. The results show a significant change in the length of the cross section which suggest that the geomorphological processes play a key role in carving and shaping the river banks during the floods. 

Keywords: Flood Induced, Geomorphic imprints, Kelantan river, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
494 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology

Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan

Abstract:

In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.  

Keywords: Prototype design, water table apparatus, NV, wind incidence angles, simulations, fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
493 High-performance Second-Generation Controlled Current Conveyor CCCII and High Frequency Applications

Authors: Néjib Hassen, Thouraya Ettaghzouti, Kamel Besbes

Abstract:

In this paper, a modified CCCII is presented. We have used a current mirror with low supply voltage. This circuit is operated at low supply voltage of ±1V. Tspice simulations for TSMC 0.18μm CMOS Technology has shown that the current and voltage bandwidth are respectively 3.34GHz and 4.37GHz, and parasitic resistance at port X has a value of 169.320 for a control current of 120μA. In order to realize this circuit, we have implemented in this first step a universal current mode filter where the frequency can reach the 134.58MHz. In the second step, we have implemented two simulated inductors: one floating and the other grounded. These two inductors are operated in high frequency and variable depending on bias current I0. Finally, we have used the two last inductors respectively to implement two sinusoidal oscillators domains of frequencies respectively: [470MHz, 692MHz], and [358MHz, 572MHz] for bias currents I0 [80μA, 350μA].

Keywords: Current controlled current conveyor CCCII, floating inductor, grounded inductor, oscillator, universal filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
492 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease

Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin

Abstract:

Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.

Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
491 Shock Induced Damage onto Free-Standing Objects in an Earthquake

Authors: Haider AlAbadi, Joe Petrolito, Nelson Lam, Emad Gad

Abstract:

In areas of low to moderate seismicity many building contents and equipment are not positively fixed to the floor or tied to adjacent walls. Under seismic induced horizontal vibration, such contents and equipment can suffer from damage by either overturning or impact associated with rocking. This paper focuses on the estimation of shock on typical contents and equipment due to rocking. A simplified analytical model is outlined that can be used to estimate the maximum acceleration on a rocking object given its basic geometric and mechanical properties. The developed model was validated against experimental results. The experimental results revealed that the maximum shock acceleration can be underestimated if the static stiffness of the materials at the interface between the rocking object and floor is used rather than the dynamic stiffness. Excellent agreement between the model and experimental results was found when the dynamic stiffness for the interface material was used, which was found to be generally much higher than corresponding static stiffness under different investigated boundary conditions of the cushion. The proposed model can be a beneficial tool in performing a rapid assessment of shock sensitive components considered for possible seismic rectification. 

Keywords: Impact, shock, earthquakes, rocking, building contents, overturning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
490 Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System

Authors: Tatyana R. Radeva, Ivan S. Yatchev, Dimitar N. Karastoyanov, Nikolay I. Stoimenov, Stanislav D. Gyoshev

Abstract:

The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.

Keywords: Busbar system, coupled problems, finite element method, short-circuit currents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976
489 Third Order Current-mode Quadrature Sinusoidal Oscillator with High Output Impedances

Authors: Kritphon Phanruttanachai, Winai Jaikla

Abstract:

This article presents a current-mode quadrature oscillator using differential different current conveyor (DDCC) and voltage differencing transconductance amplifier (VDTA) as active elements. The proposed circuit is realized fro m a non-inverting lossless integrator and an inverting second order low-pass filter. The oscillation condition and oscillation frequency can be electronically/orthogonally controlled via input bias currents. The circuit description is very simple, consisting of merely 1 DDCC, 1 VDTA, 1 grounded resistor and 3 grounded capacitors. Using only grounded elements, the proposed circuit is then suitable for IC architecture. The proposed oscillator has high output impedance which is easy to cascade or dive the external load without the buffer devices. The PSPICE simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.76mW at ±1.25V supply voltages.

Keywords: Current-mode, oscillator, integrated circuit, DDCC, VDTA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
488 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: Ecodesign, induction hobs, virtual prototyping, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
487 Differential Protection for Power Transformer Using Wavelet Transform and PNN

Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry

Abstract:

A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.

Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130