Search results for: genetic engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1827

Search results for: genetic engineering

1647 Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1646 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments

Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas

Abstract:

Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.

Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
1645 Cost Based Warranty Optimisation Using Genetic Algorithm

Authors: Dragan D. Stamenkovic, Vladimir M. Popovic

Abstract:

Warranty is a powerful marketing tool for the manufacturer and a good protection for both the manufacturer and the customer. However, warranty always involves additional costs to the manufacturer, which depend on product reliability characteristics and warranty parameters. This paper presents an approach to optimisation of warranty parameters for known product failure distribution to reduce the warranty costs to the manufacturer while retaining the promotional function of the warranty. Combination free replacement and pro-rata warranty policy is chosen as a model and the length of free replacement period and pro-rata policy period are varied, as well as the coefficients that define the pro-rata cost function. Multiparametric warranty optimisation is done by using genetic algorithm. Obtained results are guideline for the manufacturer to choose the warranty policy that minimises the costs and maximises the profit.

Keywords: costs, genetic algorithm, optimisation, warranty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1644 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
1643 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Authors: S. Farzi

Abstract:

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.

Keywords: GMDH, GPNN, GA, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
1642 The Performance of Genetic Algorithm for Synchronized Chaotic Chen System in CDMA Satellite Channel

Authors: Salah Salmi, Karim Kemih, Malek Benslama

Abstract:

Synchronization is a difficult problem in CDMA satellite communications. Due to the influence of additive noise and fading in the mobile channel, it is not easy to keep up with the attenuation and offset. This paper considers a recently proposed approach to solve the problem of synchronization chaotic Chen system in CDMA satellite communication in the presence of constant attenuation and offset. An analytic algorithm that provides closed form channel and carrier offset estimates is presented. The principle of this approach is based on adding a compensation block before the receiver to compensate the distortion of the imperfect channel by using genetic algorithm. The resultants presented, show that the receiver is able to recover rapidly the synchronization with the transmitter.

Keywords: Chaotic Chen system, genetic algorithm, Synchronization, CDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1641 A Genetic Algorithm Approach Considering Zero Injection Bus Constraint Modeling for Optimal Phasor Measurement Unit Placement

Authors: G. Chandana Sushma, T. R. Jyothsna

Abstract:

This paper presents optimal Phasor Measurement Unit (PMU) Placement in network using a genetic algorithm approach as it is infeasible and require high installation cost to place PMUs at every bus in network. This paper proposes optimal PMU allocation considering observability and redundancy utilizing Genetic Algorithm (GA) approach. The nonlinear constraints of buses are modeled to give accurate results. Constraints associated with Zero Injection (ZI) buses and radial buses are modeled to optimize number of locations for PMU placement. GA is modeled with ZI bus constraints to minimize number of locations without losing complete observability. Redundancy of every bus in network is computed to show optimum redundancy of complete system network. The performance of method is measured by Bus Observability Index (BOI) and Complete System Observability Performance Index (CSOPI). MATLAB simulations are carried out on IEEE -14, -30 and -57 bus-systems and compared with other methods in literature survey to show the effectiveness of the proposed approach.

Keywords: Constraints, genetic algorithm, observability, phasor measurement units, redundancy, synchrophasors, zero injection bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
1640 Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

Authors: Jin-Sung Kim, Jin-Hwan Kim, Ji-Mo Park, Sung-Man Park, Won-Yong Choe, Hoon Heo

Abstract:

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.

Keywords: Genetic Algorithm, Auto tuning, Hybrid random number generator, Reverse Osmosis, PID controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126
1639 Hybridizing Genetic Algorithm with Biased Chance Local Search

Authors: Mehdi Basikhasteh, Mohamad A. Movafaghpour

Abstract:

This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.

Keywords: University Course Timetabling, Memetic Algorithm, Biased Chance Assignment, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
1638 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems

Authors: I. Abuiziah, N. Shakarneh

Abstract:

Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.

Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5100
1637 Determination of Moisture Diffusivity of AACin Drying Phase using Genetic Algorithm

Authors: Jan Kočí, Jiří Maděra, Miloš Jerman, Robert Černý

Abstract:

The current practice of determination of moisture diffusivity of building materials under laboratory conditions is predominantly aimed at the absorption phase. The main reason is the simplicity of the inverse analysis of measured moisture profiles. However, the liquid moisture transport may exhibit significant hysteresis. Thus, the moisture diffusivity should be different in the absorption (wetting) and desorption (drying) phase. In order to bring computer simulations of hygrothermal performance of building materials closer to the reality, it is then necessary to find new methods for inverse analysis which could be used in the desorption phase as well. In this paper we present genetic algorithm as a possible method of solution of the inverse problem of moisture transport in desorption phase. Its application is demonstrated for AAC as a typical building material.

Keywords: autoclaved aerated concrete, desorption, genetic algorithm, inverse analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
1636 Optimization of Flexible Job Shop Scheduling Problem with Sequence Dependent Setup Times Using Genetic Algorithm Approach

Authors: Sanjay Kumar Parjapati, Ajai Jain

Abstract:

This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.

Keywords: Flexible Job Shop, Genetic Algorithm, Makespan, Sequence Dependent Setup Times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294
1635 Minimization of Non-Productive Time during 2.5D Milling

Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna

Abstract:

In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.

Keywords: Non-productive time, Airtime, 2.5 D milling, Laser cutting, Metaheuristic, Genetic Algorithm, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
1634 Playing Games with Genetic Algorithms: Application on Price-QoS Competition in Telecommunications Market

Authors: M’hamed Outanoute, Mohamed Baslam, Belaid Bouikhalene

Abstract:

The customers use the best compromise criterion between price and quality of service (QoS) to select or change their Service Provider (SP). The SPs share the same market and are competing to attract more customers to gain more profit. Due to the divergence of SPs interests, we believe that this situation is a non-cooperative game of price and QoS. The game converges to an equilibrium position known Nash Equilibrium (NE). In this work, we formulate a game theoretic framework for the dynamical behaviors of SPs. We use Genetic Algorithms (GAs) to find the price and QoS strategies that maximize the profit for each SP and illustrate the corresponding strategy in NE. In order to quantify how this NE point is performant, we perform a detailed analysis of the price of anarchy induced by the NE solution. Finally, we provide an extensive numerical study to point out the importance of considering price and QoS as a joint decision parameter.

Keywords: Pricing, QoS, Market share game, Genetic algorithms, Nash equilibrium, Learning, Price of anarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1633 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1632 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Tami Alghamdi, Terence Soule

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
1631 Learning Process Enhancement for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib

Abstract:

Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.

Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
1630 Design Optimization of Ferrocement-Laminated Plate Using Genetic Algorithm

Authors: M. Rokonuzzaman, Z. Gürdal

Abstract:

This paper describes the design optimization of ferrocement-laminated plate made up of reinforcing steel wire mesh(es) and cement mortar. For the improvement of the designing process, the plate is modeled as a multi-layer medium, dividing the ferrocement plate into layers of mortar and ferrocement. The mortar layers are assumed to be isotropic in nature and the ferrocement layers are assumed to be orthotropic. The ferrocement layers are little stiffer, but much more costlier, than the mortar layers due the presence of steel wire mesh. The optimization is performed for minimum weight design of the laminate using a genetic algorithm. The optimum designs are discussed for different plate configurations and loadings, and it is compared with the worst designs obtained at the final generation. The paper provides a procedure for the designers in decision-making process.

Keywords: Buckling, Ferrocement-Laminated Plate, Genetic Algorithm, Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
1629 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
1628 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

Authors: Wenqin Wang, Shouming Zhong

Abstract:

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1627 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan

Abstract:

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
1626 A Comparison among Wolf Pack Search and Four other Optimization Algorithms

Authors: Shahla Shoghian, Maryam Kouzehgar

Abstract:

The main objective of this paper is applying a comparison between the Wolf Pack Search (WPS) as a newly introduced intelligent algorithm with several other known algorithms including Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL), Binary and Continues Genetic algorithms. All algorithms are applied on two benchmark cost functions. The aim is to identify the best algorithm in terms of more speed and accuracy in finding the solution, where speed is measured in terms of function evaluations. The simulation results show that the SFL algorithm with less function evaluations becomes first if the simulation time is important, while if accuracy is the significant issue, WPS and PSO would have a better performance.

Keywords: Wolf Pack Search, Particle Swarm Optimization, Continues Genetic Algorithm, Binary Genetic Algorithm, Shuffled Frog Leaping, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3752
1625 Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm

Authors: Ganesh. Vulasala, Sivanagaraju. Sirigiri, Ramana. Thiruveedula

Abstract:

This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.

Keywords: Distribution system, Load flows, Reconfiguration, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3249
1624 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)

Authors: K. Vijayalakshmi, S. Radhakrishnan

Abstract:

In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.

Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
1623 Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method

Authors: Mohd Herwan Sulaiman, Omar Aliman, Siti Rafidah Abdul Rahim

Abstract:

This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.

Keywords: Embedded generation (EG), load flow study, optimal allocation, real coded genetic algorithm (RCGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
1622 Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space

Authors: Vichai Rungreunganaun, Chirawat Woarawichai

Abstract:

The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum storage space for the decision maker in each period is considered. The decision maker needs to determine what products to order in what quantities with which suppliers in which periods. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer programming and is solved with the GAs. The detailed computation results are presented.

Keywords: Genetic Algorithms, Inventory lot-sizing, Supplier selection, Storage space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
1621 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets

Authors: R. K. Agrawal, Rajni Bala

Abstract:

Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.

Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1620 Heuristic Continuous-time Associative Memories

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.

Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
1619 Simulation of Increased Ambient Ozone to Estimate Nutrient Content and Genetic Change in Two Thai Soybean Cultivars

Authors: Orose Rugchati, Kanita Thanacharoenchanaphas

Abstract:

This research studied the simulation of increased ambient ozone to estimate nutrient content and genetic changes in two Thai soybean cultivars (Chiang Mai 60 and Srisumrong 1). Ozone stress conditions affected proteins and lipids. It was found that proteins decreased, but lipids increased. Srisumrong 1 cultivars were more sensitive to ozone stress than Chiang Mai 60 cultivars. The effect of ozone stress conditions on plant phenotype and genotype was analyzed using the AFLP technique for the 2 Thai soybean cultivars (Chiang Mai 60 and Srisumrong 1).

Keywords: simulation, ambient ozone estimate, nutrient content, genetic changes , Thai soybean

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
1618 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand

Authors: Salinee Thumronglaohapun

Abstract:

The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.

Keywords: Location-allocation problem, stochastic demand, local search, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751