Search results for: and parameter identification.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2007

Search results for: and parameter identification.

1827 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: Facial expression identification, curvelet coefficients, support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1826 Parameter Selections of Fuzzy C-Means Based on Robust Analysis

Authors: Kuo-Lung Wu

Abstract:

The weighting exponent m is called the fuzzifier that can have influence on the clustering performance of fuzzy c-means (FCM) and mÎ[1.5,2.5] is suggested by Pal and Bezdek [13]. In this paper, we will discuss the robust properties of FCM and show that the parameter m will have influence on the robustness of FCM. According to our analysis, we find that a large m value will make FCM more robust to noise and outliers. However, if m is larger than the theoretical upper bound proposed by Yu et al. [14], the sample mean will become the unique optimizer. Here, we suggest to implement the FCM algorithm with mÎ[1.5,4] under the restriction when m is smaller than the theoretical upper bound.

Keywords: Fuzzy c-means, robust, fuzzifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1825 A Statistical Identification Approach by the Boundary Field Changes

Authors: Rumena D. Stancheva, Ilona I. Iatcheva

Abstract:

In working mode some unexpected changes could be arise in inner structure of electromagnetic device. They influence modification in electromagnetic field propagation map. The field values at an observed boundary are also changed. The development of the process has to be watched because the arising structural changes would provoke the device to be gone out later. The probabilistic assessment of the state is possible to be made. The numerical assessment points if the resulting changes have only accidental character or they are due to the essential inner structural disturbances. The presented application example is referring to the 200MW turbine-generator. A part of the stator core end teeth zone is simulated broken. Quasi three-dimensional electromagnetic and temperature field are solved applying FEM. The stator core state diagnosis is proposed to be solved as an identification problem on the basis of a statistical criterion.

Keywords: Identification, structural disturbance, statistical criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
1824 Color and Layout-based Identification of Documents Captured from Handheld Devices

Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold

Abstract:

This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.

Keywords: Document color modeling, document visualsignature, kernel density estimation, document identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1823 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
1822 Model-Free Distributed Control of Dynamical Systems

Authors: Javad Khazaei, Rick S. Blum

Abstract:

Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.

Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
1821 Portable Virtual Piano Design

Authors: Yu-Xiang Zhao, Chien-Hsing Chou, Mu-Chun Su, Yi-Zeng Hsieh

Abstract:

The purpose of this study is to design a portable virtual piano. By utilizing optical fiber gloves and the virtual piano software designed by this study, the user can play the piano anywhere at any time. This virtual piano consists of three major parts: finger tapping identification, hand movement and positioning identification, and MIDI software sound effect simulation. To play the virtual piano, the user wears optical fiber gloves and simulates piano key tapping motions. The finger bending information detected by the optical fiber gloves can tell when piano key tapping motions are made. Images captured by a video camera are analyzed, hand locations and moving directions are positioned, and the corresponding scales are found. The system integrates finger tapping identification with information about hand placement in relation to corresponding piano key positions, and generates MIDI piano sound effects based on this data. This experiment shows that the proposed method achieves an accuracy rate of 95% for determining when a piano key is tapped.

Keywords: virtual piano, portable, identification, optical fibergloves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
1820 Hazard Identification and Sensitivity of Potential Resource of Emergency Water Supply

Authors: A. Bumbová, M. Čáslavský, F. Božek, J. Dvořák, E. Bakoš

Abstract:

The paper presents the case study of hazard identification and sensitivity of potential resource of emergency water supply as part of the application of methodology classifying the resources of drinking water for emergency supply of population. The case study has been carried out on a selected resource of emergency water supply in one region of the Czech Republic. The hazard identification and sensitivity of potential resource of emergency water supply is based on a unique procedure and developed general registers of selected types of hazards and sensitivities. The registers have been developed with the help of the “Fault Tree Analysis” method in combination with the “What if method”. The identified hazards for the assessed resource include hailstorms and torrential rains, drought, soil erosion, accidents of farm machinery, and agricultural production. The developed registers of hazards and vulnerabilities and a semi-quantitative assessment of hazards for individual parts of hydrological structure and technological elements of presented drilled wells are the basis for a semi-quantitative risk assessment of potential resource of emergency supply of population and the subsequent classification of such resource within the system of crisis planning.

Keywords: Hazard identification, register of hazards, sensitivity identification, register of sensitivity, emergency water supply, state of crisis, resource of emergency water supply, ground water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
1819 Long-Range Dependence of Financial Time Series Data

Authors: Chatchai Pesee

Abstract:

This paper examines long-range dependence or longmemory of financial time series on the exchange rate data by the fractional Brownian motion (fBm). The principle of spectral density function in Section 2 is used to find the range of Hurst parameter (H) of the fBm. If 0< H <1/2, then it has a short-range dependence (SRD). It simulates long-memory or long-range dependence (LRD) if 1/2< H <1. The curve of exchange rate data is fBm because of the specific appearance of the Hurst parameter (H). Furthermore, some of the definitions of the fBm, long-range dependence and selfsimilarity are reviewed in Section II as well. Our results indicate that there exists a long-memory or a long-range dependence (LRD) for the exchange rate data in section III. Long-range dependence of the exchange rate data and estimation of the Hurst parameter (H) are discussed in Section IV, while a conclusion is discussed in Section V.

Keywords: Fractional Brownian motion, long-rangedependence, memory, short-range dependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1818 Inference of Stress-Strength Model for a Lomax Distribution

Authors: H. Panahi, S. Asadi

Abstract:

In this paper, the estimation of the stress-strength parameter R = P(Y < X), when X and Y are independent and both are Lomax distributions with the common scale parameters but different shape parameters is studied. The maximum likelihood estimator of R is derived. Assuming that the common scale parameter is known, the bayes estimator and exact confidence interval of R are discussed. Simulation study to investigate performance of the different proposed methods has been carried out.

Keywords: Stress-Strength model; maximum likelihoodestimator; Bayes estimator; Lomax distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1817 On the Parameter of the Burr Type X under Bayesian Principles

Authors: T. N. Sindhu, M. Aslam

Abstract:

A comprehensive Bayesian analysis has been carried out in the context of informative and non-informative priors for the shape parameter of the Burr type X distribution under different symmetric and asymmetric loss functions. Elicitation of hyperparameter through prior predictive approach is also discussed. Also we derive the expression for posterior predictive distributions, predictive intervals and the credible Intervals. As an illustration, comparisons of these estimators are made through simulation study.

Keywords: Credible Intervals, Loss Functions, Posterior Predictive Distributions, Predictive Intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1816 Reentry Trajectory Optimization Based on Differential Evolution

Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao

Abstract:

Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.

Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1815 Proactive Identification of False Alert for Drug-Drug Interaction

Authors: Hsuan-Chia Yang, Yan-Jhih Haung, Yu-Chuan Li

Abstract:

Researchers of drug-drug interaction alert systems have often suggested that there were high overridden rate for alerts and also too false alerts. However, research about decreasing false alerts is scant. Therefore, the aim of this article attempts to proactive identification of false alert for drug-drug interaction and provide solution to decrease false alerts. This research involved retrospective analysis prescribing database and calculated false alert rate by using MYSQL and JAVA. Results of this study showed 17% of false alerts and the false alert rate in the hospitals (37%) was more than in the clinics. To conclude, this study described the importance that drug-drug interaction alert system should not only detect drug name but also detect frequency or route, as well as in providing solution to decrease false alerts.

Keywords: drug-drug interaction, proactive identification, false alert

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
1814 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1813 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS

Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
1812 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata

Abstract:

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
1811 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
1810 UEMSD Risk Identification – Case Study

Authors: K. Sekulová, M. Šimon

Abstract:

The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation Risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upperextremities musculoskeletal disorders.

Keywords: Case study, upper-extremity musculoskeletal disorders, ergonomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1809 Blind Identification and Equalization of CDMA Signals Using the Levenvberg-Marquardt Algorithm

Authors: Mohammed Boutalline, Imad Badi, Belaid Bouikhalene, Said Safi

Abstract:

In this paper we describe the Levenvberg-Marquardt (LM) algorithm for identification and equalization of CDMA signals received by an antenna array in communication channels. The synthesis explains the digital separation and equalization of signals after propagation through multipath generating intersymbol interference (ISI). Exploiting discrete data transmitted and three diversities induced at the reception, the problem can be composed by the Block Component Decomposition (BCD) of a tensor of order 3 which is a new tensor decomposition generalizing the PARAFAC decomposition. We optimize the BCD decomposition by Levenvberg-Marquardt method gives encouraging results compared to classical alternating least squares algorithm (ALS). In the equalization part, we use the Minimum Mean Square Error (MMSE) to perform the presented method. The simulation results using the LM algorithm are important.

Keywords: Identification and equalization, communication channel, Levenvberg-Marquardt, tensor decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1808 Polymorphism of HMW-GS in Collection of Wheat Genotypes

Authors: M. Chňapek, M. Tomka, R. Peroutková, Z. Gálová

Abstract:

Processes of plant breeding, testing and licensing of new varieties, patent protection in seed production, relations in trade and protection of copyright are dependent on identification, differentiation and characterization of plant genotypes. Therefore, we focused our research on utilization of wheat storage proteins as genetic markers suitable not only for differentiation of individual genotypes, but also for identification and characterization of their considerable properties. We analyzed a collection of 102 genotypes of bread wheat (Triticum aestivum L.), 41 genotypes of spelt wheat (Triticum spelta L.), and 35 genotypes of durum wheat (Triticum durum Desf.), in this study. Our results show, that genotypes of bread wheat and durum wheat were homogenous and single line, but spelt wheat genotypes were heterogenous. We observed variability of HMW-GS composition according to environmental factors and level of breeding and predict technological quality on the basis of Glu-score calculation.

Keywords: Genotype identification, HMW-GS, wheat quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1807 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
1806 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.

Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
1805 Estimation of R= P [Y < X] for Two-parameter Burr Type XII Distribution

Authors: H.Panahi, S.Asadi

Abstract:

In this article, we consider the estimation of P[Y < X], when strength, X and stress, Y are two independent variables of Burr Type XII distribution. The MLE of the R based on one simple iterative procedure is obtained. Assuming that the common parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator and Bayes estimator of P[Y < X] are discussed. The exact confidence interval of the R is also obtained. Monte Carlo simulations are performed to compare the different proposed methods.

Keywords: Stress-Strength model, Maximum likelihood estimator, Bayes estimator, Burr type XII distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
1804 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung

Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner

Abstract:

Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.

Keywords: lung cancer, micro arrays, data mining, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1803 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
1802 Molar Excess Volumes and Excess Isentropic Compressibilities of Ternary Mixtures Containing 2-Pyrrolidinone

Authors: Jaibir S. Yadav, Dimple, Vinod K. Sharma

Abstract:

Molar excess Volumes, VE ijk and speeds of sound , uijk of 2-pyrrolidinone (i) + benzene or toluene (j) + ethanol (k) ternary mixture have been measured as a function of composition at 308.15 K. The observed speeds of sound data have been utilized to determine excess isentropic compressiblities, ( E S κ )ijk of ternary (i + j + k) mixtures. Molar excess volumes, VE ijk and excess isentropic compressibilities, ( E S κ )ijk data have fitted to the Redlich-Kister equation to calculate ternary adjustable parameters and standard deviations. The Moelywn-Huggins concept (Huggins in Polymer 12: 389-399, 1971) of connectivity between the surfaces of the constituents of binary mixtures has been extended to ternary mixtures (using the concept of a connectivity parameter of third degree of molecules, 3ξ , which inturn depends on its topology) to obtain an expression that describes well the measured VE ijk and ( E S κ )ijk data.

Keywords: Connectivity parameter of third degree, , Excess isentropic compressibilities, ( ES κ )ijk, Interaction energy parameter, χ, Molar excess volumes, VEijk, Speeds of sound, uijk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1801 Motion Parameter Estimation via Dopplerlet-Transform-Based Matched Field Processing

Authors: Hongyan Dai

Abstract:

This work presents a matched field processing (MFP) algorithm based on Dopplerlet transform for estimating the motion parameters of a sound source moving along a straight line and with a constant speed by using a piecewise strategy, which can significantly reduce the computational burden. Monte Carlo simulation results and an experimental result are presented to verify the effectiveness of the algorithm advocated.

Keywords: matched field processing; Dopplerlet transform; motion parameter estimation; piecewise strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1800 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
1799 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
1798 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

Authors: V.Manikandan, N.Devarajan

Abstract:

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634