Search results for: Data integrity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7588

Search results for: Data integrity

7408 Data Transformation Services (DTS): Creating Data Mart by Consolidating Multi-Source Enterprise Operational Data

Authors: J. D. D. Daniel, K. N. Goh, S. M. Yusop

Abstract:

Trends in business intelligence, e-commerce and remote access make it necessary and practical to store data in different ways on multiple systems with different operating systems. As business evolve and grow, they require efficient computerized solution to perform data update and to access data from diverse enterprise business applications. The objective of this paper is to demonstrate the capability of DTS [1] as a database solution for automatic data transfer and update in solving business problem. This DTS package is developed for the sales of variety of plants and eventually expanded into commercial supply and landscaping business. Dimension data modeling is used in DTS package to extract, transform and load data from heterogeneous database systems such as MySQL, Microsoft Access and Oracle that consolidates into a Data Mart residing in SQL Server. Hence, the data transfer from various databases is scheduled to run automatically every quarter of the year to review the efficient sales analysis. Therefore, DTS is absolutely an attractive solution for automatic data transfer and update which meeting today-s business needs.

Keywords: Data Transformation Services (DTS), ObjectLinking and Embedding Database (OLEDB), Data Mart, OnlineAnalytical Processing (OLAP), Online Transactional Processing(OLTP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
7407 Extraction of Data from Web Pages: A Vision Based Approach

Authors: P. S. Hiremath, Siddu P. Algur

Abstract:

With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.

Keywords: Web data records, web data regions, web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
7406 Visual-Graphical Methods for Exploring Longitudinal Data

Authors: H. W. Ker

Abstract:

Longitudinal data typically have the characteristics of changes over time, nonlinear growth patterns, between-subjects variability, and the within errors exhibiting heteroscedasticity and dependence. The data exploration is more complicated than that of cross-sectional data. The purpose of this paper is to organize/integrate of various visual-graphical techniques to explore longitudinal data. From the application of the proposed methods, investigators can answer the research questions include characterizing or describing the growth patterns at both group and individual level, identifying the time points where important changes occur and unusual subjects, selecting suitable statistical models, and suggesting possible within-error variance.

Keywords: Data exploration, exploratory analysis, HLMs/LMEs, longitudinal data, visual-graphical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
7405 A Materialized Approach to the Integration of XML Documents: the OSIX System

Authors: H. Ahmad, S. Kermanshahani, A. Simonet, M. Simonet

Abstract:

The data exchanged on the Web are of different nature from those treated by the classical database management systems; these data are called semi-structured data since they do not have a regular and static structure like data found in a relational database; their schema is dynamic and may contain missing data or types. Therefore, the needs for developing further techniques and algorithms to exploit and integrate such data, and extract relevant information for the user have been raised. In this paper we present the system OSIX (Osiris based System for Integration of XML Sources). This system has a Data Warehouse model designed for the integration of semi-structured data and more precisely for the integration of XML documents. The architecture of OSIX relies on the Osiris system, a DL-based model designed for the representation and management of databases and knowledge bases. Osiris is a viewbased data model whose indexing system supports semantic query optimization. We show that the problem of query processing on a XML source is optimized by the indexing approach proposed by Osiris.

Keywords: Data integration, semi-structured data, views, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
7404 Multi-criteria Optimization of Square Beam using Linear Weighted Average Model

Authors: Ali Farhaninejad, Rizal Zahari, Ehsan Rasooliyazdi

Abstract:

Increasing energy absorption is a significant parameter in vehicle design. Absorbing more energy results in decreasing occupant damage. Limitation of the deflection in a side impact results in decreased energy absorption (SEA) and increased peak load (PL). Hence a high crash force jeopardizes passenger safety and vehicle integrity. The aims of this paper are to determine suitable dimensions and material of a square beam subjected to side impact, in order to maximize SEA and minimize PL. To achieve this novel goal, the geometric parameters of a square beam are optimized using the response surface method (RSM).multi-objective optimization is performed, and the optimum design for different response features is obtained.

Keywords: Crashworthiness, side impact, energy absorption, multi-objective optimization, Square beam, SEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
7403 Use of Novel Algorithms MAJE4 and MACJER-320 for Achieving Confidentiality and Message Authentication in SSL and TLS

Authors: Sheena Mathew, K. Poulose Jacob

Abstract:

Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.

Keywords: Confidentiality, HMAC, Integrity, MACJER-320, MAJE4, RC4, Secure Socket Layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
7402 Influence of High Speed Parameters on the Quality of Machined Surface

Authors: Jana Novakova, Lenka Petrkovska, Josef Brychta, Robert Cep, Lenka Ocenasova

Abstract:

The contribution is dealing with the influence of high speed parameters on the quality of machined surface. In general the principle of high speed cutting lies in achieving faster machine times with concurrent increase in accuracy and quality of the machined areas in largely irregular, mathematically hard to define shapes. High speed machining is a highly effective method of machining with the following goals: increasing of machining productivity, increasing of quality of the machined surface, improving of machining economy, improving of ecological aspects of machining. This article is based on an experiment performed by the Department of Machining and Assembly of the Faculty of Mechanical Engineering of VŠBTechnical University of Ostrava.

Keywords: High speed cutting, measurement, surface integrity, surface roughness, residual stress/

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
7401 Data-Driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: Startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
7400 Classifying Bio-Chip Data using an Ant Colony System Algorithm

Authors: Minsoo Lee, Yearn Jeong Kim, Yun-mi Kim, Sujeung Cheong, Sookyung Song

Abstract:

Bio-chips are used for experiments on genes and contain various information such as genes, samples and so on. The two-dimensional bio-chips, in which one axis represent genes and the other represent samples, are widely being used these days. Instead of experimenting with real genes which cost lots of money and much time to get the results, bio-chips are being used for biological experiments. And extracting data from the bio-chips with high accuracy and finding out the patterns or useful information from such data is very important. Bio-chip analysis systems extract data from various kinds of bio-chips and mine the data in order to get useful information. One of the commonly used methods to mine the data is classification. The algorithm that is used to classify the data can be various depending on the data types or number characteristics and so on. Considering that bio-chip data is extremely large, an algorithm that imitates the ecosystem such as the ant algorithm is suitable to use as an algorithm for classification. This paper focuses on finding the classification rules from the bio-chip data using the Ant Colony algorithm which imitates the ecosystem. The developed system takes in consideration the accuracy of the discovered rules when it applies it to the bio-chip data in order to predict the classes.

Keywords: Ant Colony System, DNA chip data, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
7399 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
7398 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179
7397 Towards Development of Solution for Business Process-Oriented Data Analysis

Authors: M. Klimavicius

Abstract:

This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner.

Keywords: Data warehouse, data analysis, business processmanagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
7396 The Framework of Termination Mechanism in Modern Emergency Management

Authors: Yannan Wu, An Chen, Yan Zhao

Abstract:

Termination Mechanism is an indispensible part of the emergency management mechanism. Despite of its importance in both theory and practice, it is almost a brand new field for researching. The concept of termination mechanism is proposed firstly in this paper, and the design and implementation which are helpful to guarantee the effect and integrity of emergency management are discussed secondly. Starting with introduction of the problems caused by absent termination and incorrect termination, the essence of termination mechanism is analyzed, a model based on Optimal Stopping Theory is constructed and the termination index is given. The model could be applied to find the best termination time point.. Termination decision should not only be concerned in termination stage, but also in the whole emergency management process, which makes it a dynamic decision making process. Besides, the main subjects and the procedure of termination are illustrated after the termination time point is given. Some future works are discussed lastly.

Keywords: Emergency management, Termination Mechanism, Optimal Termination Model, Decision Making, Optimal StoppingTheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
7395 Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning

Authors: Muslihah Wook, Zawiyah M. Yusof, Mohd Zakree Ahmad Nazri

Abstract:

Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.

Keywords: Data mining, Institutions of Higher Learning, Knowledge Management System, Students' academic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
7394 Thailand National Biodiversity Database System with webMathematica and Google Earth

Authors: W. Katsarapong, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

National Biodiversity Database System (NBIDS) has been developed for collecting Thai biodiversity data. The goal of this project is to provide advanced tools for querying, analyzing, modeling, and visualizing patterns of species distribution for researchers and scientists. NBIDS data record two types of datasets: biodiversity data and environmental data. Biodiversity data are specie presence data and species status. The attributes of biodiversity data can be further classified into two groups: universal and projectspecific attributes. Universal attributes are attributes that are common to all of the records, e.g. X/Y coordinates, year, and collector name. Project-specific attributes are attributes that are unique to one or a few projects, e.g., flowering stage. Environmental data include atmospheric data, hydrology data, soil data, and land cover data collecting by using GLOBE protocols. We have developed webbased tools for data entry. Google Earth KML and ArcGIS were used as tools for map visualization. webMathematica was used for simple data visualization and also for advanced data analysis and visualization, e.g., spatial interpolation, and statistical analysis. NBIDS will be used by park rangers at Khao Nan National Park, and researchers.

Keywords: GLOBE protocol, Biodiversity, Database System, ArcGIS, Google Earth and webMathematica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
7393 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: Interactive dashboards, optical fibers, structural health monitoring, visual analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
7392 Evaluation of Clustering Based on Preprocessing in Gene Expression Data

Authors: Seo Young Kim, Toshimitsu Hamasaki

Abstract:

Microarrays have become the effective, broadly used tools in biological and medical research to address a wide range of problems, including classification of disease subtypes and tumors. Many statistical methods are available for analyzing and systematizing these complex data into meaningful information, and one of the main goals in analyzing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we express and compare the performance of several clustering methods based on data preprocessing including strategies of normalization or noise clearness. We also evaluate each of these clustering methods with validation measures for both simulated data and real gene expression data. Consequently, clustering methods which are common used in microarray data analysis are affected by normalization and degree of noise and clearness for datasets.

Keywords: Gene expression, clustering, data preprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
7391 Addressing Data Security in the Cloud

Authors: Marinela Mircea

Abstract:

The development of information and communication technology, the increased use of the internet, as well as the effects of the recession within the last years, have lead to the increased use of cloud computing based solutions, also called on-demand solutions. These solutions offer a large number of benefits to organizations as well as challenges and risks, mainly determined by data visualization in different geographic locations on the internet. As far as the specific risks of cloud environment are concerned, data security is still considered a peak barrier in adopting cloud computing. The present study offers an approach upon ensuring the security of cloud data, oriented towards the whole data life cycle. The final part of the study focuses on the assessment of data security in the cloud, this representing the bases in determining the potential losses and the premise for subsequent improvements and continuous learning.

Keywords: cloud computing, data life cycle, data security, security assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
7390 Secure Internet Connectivity for Dynamic Source Routing (DSR) based Mobile Ad hoc Networks

Authors: Ramanarayana Kandikattu, Lillykutty Jacob

Abstract:

'Secure routing in Mobile Ad hoc networks' and 'Internet connectivity to Mobile Ad hoc networks' have been dealt separately in the past research. This paper proposes a light weight solution for secure routing in integrated Mobile Ad hoc Network (MANET)-Internet. The proposed framework ensures mutual authentication of Mobile Node (MN), Foreign Agent (FA) and Home Agent (HA) to avoid various attacks on global connectivity and employs light weight hop-by-hop authentication and end-to-end integrity to protect the network from most of the potential security attacks. The framework also uses dynamic security monitoring mechanism to monitor the misbehavior of internal nodes. Security and performance analysis show that our proposed framework achieves good security while keeping the overhead and latency minimal.

Keywords: Internet, Mobile Ad hoc Networks, Secure routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
7389 A Network Traffic Prediction Algorithm Based On Data Mining Technique

Authors: D. Prangchumpol

Abstract:

This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.

Keywords: Traffic prediction, association rule, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672
7388 Fuzzy Processing of Uncertain Data

Authors: Petr Morávek, Miloš Šeda

Abstract:

In practice, we often come across situations where it is necessary to make decisions based on incomplete or uncertain data. In control systems it may be due to the unknown exact mathematical model, or its excessive complexity (e.g. nonlinearity) when it is necessary to simplify it, respectively, to solve it using a rule base. In the case of databases, searching data we compare a similarity measure with of the requirements of the selection with stored data, where both the select query and the data itself may contain vague terms, for example in the form of linguistic qualifiers. In this paper, we focus on the processing of uncertain data in databases and demonstrate it on the example multi-criteria decision making in the selection of variants, specified by higher number of technical parameters.

Keywords: fuzzy logic, linguistic variable, multicriteria decision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
7387 The Effect of Silicon on Cadmium Stress in Echium amoenum

Authors: Janet Amiri, Shekoofeh Entesari, Kourosh Delavar, Mahshid Saadatmand, Nasrin Aghamohammad Rafie

Abstract:

The beneficial effects of Si are mainly associated with its high deposition in plant tissue and enhancing their strength and rigidity. We investigated the role of Si against cadmium stress in (Echium C) in house green condition. When the seventh leaves was be appeared, plants were pretreated with five levels of Si: 0, 0.2, 0.5, 0.7and 1.5 mM Si (as sodium trisilicate, Na2(SiO2)3) and after that plants were treated with two levels of Cd (30 and 90 mM). The effects of Silicon and Cd were investigated on some physiological and biochemical parameters such as: lipid peroxidation (malondialdehyde (MDA) and other aldehydes, antocyanin and flavonoid content. Our results showed that Cd significantly increased MDA, other aldehydes, antocyanin and flavonoids content in Echium and silicon offset the negative effect and increased tolerance of Echium against Cd stress. From this results we concluded that Si increase membrane integrity and antioxidative ability in this plant against cd stress.

Keywords: Silicon, Cadmium, Echium, MDA, antocyanin, flavonoid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
7386 Automated Stereophotogrammetry Data Cleansing

Authors: Stuart Henry, Philip Morrow, John Winder, Bryan Scotney

Abstract:

The stereophotogrammetry modality is gaining more widespread use in the clinical setting. Registration and visualization of this data, in conjunction with conventional 3D volumetric image modalities, provides virtual human data with textured soft tissue and internal anatomical and structural information. In this investigation computed tomography (CT) and stereophotogrammetry data is acquired from 4 anatomical phantoms and registered using the trimmed iterative closest point (TrICP) algorithm. This paper fully addresses the issue of imaging artifacts around the stereophotogrammetry surface edge using the registered CT data as a reference. Several iterative algorithms are implemented to automatically identify and remove stereophotogrammetry surface edge outliers, improving the overall visualization of the combined stereophotogrammetry and CT data. This paper shows that outliers at the surface edge of stereophotogrammetry data can be successfully removed automatically.

Keywords: Data cleansing, stereophotogrammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
7385 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles

Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin

Abstract:

A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.

Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
7384 UB-Tree Indexing for Semantic Query Optimization of Range Queries

Authors: S. Housseno, A. Simonet, M. Simonet

Abstract:

Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.

Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
7383 Computer Generated Hologram for SemiFragile Watermarking with Encrypted Images

Authors: G. Schirripa Spagnolo, M. De Santis

Abstract:

The protection of the contents of digital products is referred to as content authentication. In some applications, to be able to authenticate a digital product could be extremely essential. For example, if a digital product is used as a piece of evidence in the court, its integrity could mean life or death of the accused. Generally, the problem of content authentication can be solved using semifragile digital watermarking techniques. Recently many authors have proposed Computer Generated Hologram Watermarking (CGHWatermarking) techniques. Starting from these studies, in this paper a semi-fragile Computer Generated Hologram coding technique is proposed, which is able to detect malicious tampering while tolerating some incidental distortions. The proposed technique uses as watermark an encrypted image, and it is well suitable for digital image authentication.

Keywords: Asymmetric cryptography, Semi-Fragile watermarking, Image authentication, Hologram watermark, Public- Key Cryptography, RSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
7382 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
7381 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
7380 Post-Compression Consideration in Video Watermarking for Wireless Communication

Authors: Chuen-Ching Wang, Yao-Tang Chang, Yu-Chang Hsu

Abstract:

A simple but effective digital watermarking scheme utilizing a context adaptive variable length coding (CAVLC) method is presented for wireless communication system. In the proposed approach, the watermark bits are embedded in the final non-zero quantized coefficient of each DCT block, thereby yielding a potential reduction in the length of the coded block. As a result, the watermarking scheme not only provides the means to check the authenticity and integrity of the video stream, but also improves the compression ratio and therefore reduces both the transmission time and the storage space requirements of the coded video sequence. The results confirm that the proposed scheme enables the detection of malicious tampering attacks and reduces the size of the coded H.264 file. Therefore, the current study is feasible to apply in the video applications of wireless communication such as 3G system

Keywords: 3G, wireless communication, CAVLC, digitalwatermarking, motion compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
7379 Identifying Critical Success Factors for Data Quality Management through a Delphi Study

Authors: Maria Paula Santos, Ana Lucas

Abstract:

Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.

Keywords: Critical success factors, data quality, data quality management, Delphi, Q-Sort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109