Visual-Graphical Methods for Exploring Longitudinal Data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Visual-Graphical Methods for Exploring Longitudinal Data

Authors: H. W. Ker

Abstract:

Longitudinal data typically have the characteristics of changes over time, nonlinear growth patterns, between-subjects variability, and the within errors exhibiting heteroscedasticity and dependence. The data exploration is more complicated than that of cross-sectional data. The purpose of this paper is to organize/integrate of various visual-graphical techniques to explore longitudinal data. From the application of the proposed methods, investigators can answer the research questions include characterizing or describing the growth patterns at both group and individual level, identifying the time points where important changes occur and unusual subjects, selecting suitable statistical models, and suggesting possible within-error variance.

Keywords: Data exploration, exploratory analysis, HLMs/LMEs, longitudinal data, visual-graphical methods.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1056655

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102

References:


[1] Bates, D. M., & Pinheiro, J. C. (1997). Software design for longitudinal data analysis. In T. G. Gregoire, D. R. Brillinger, P. J. Diggle, E. Russek-Cohen, W. G. Warren, & R. D. Wolfinger (Ed.), Modeling longitudinal and spatially correlated data: methods, application and further direction (pp. 37-48). New York: Springer-Verlag.
[2] Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2, 131-160.
[3] Cleveland, W. S. (1993). Visualizing data. Summit, NJ: Hobart Press.
[4] Cudek, R. & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7, 41-63.
[5] Draper, D. (1995). Inference and hierarchical modeling in the social science. Journal of Educaational and Behavioral Statistics, 20, 115-147.
[6] Hox, J. J. (2000). Multilevel analysis of grouped and longitudinal data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches and specific examples (pp. 15-32). NJ: Lawrence Erlbaum Associates.
[7] Peterson, M. S., & Kramer, A. F. (2001). Contextual cueing reduces interferencee from task-irrelevant onset distractor. Visual Cognition, 8, 843-859.
[8] Pinherio, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-Plus. New York: Springer-Verlag.
[9] Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. NEW YORK: Oxford University Press.
[10] Stoolmiller, M. (2002). Visual-graphical techniques for the analysis of growth curves: the shapes and predictors of growth in substance use for the male adolescents. Retrieved October 12, 2002, from http://www.oslc.org/users/mikes/sra2.html.
[11] Venables, W. N., & Ripley, B. D. (1999). Modern applied statistics with S-Plus (3rd ed.). New York: Springer-Verlag.
[12] Wang, J. (1999). Reasons for hierarchical linear modeling: A reminder. The Journal of Experimental Education, 68, 89-93.
[13] Verbeke, G. & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Spring-Verlag.