Search results for: Cable joints
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 245

Search results for: Cable joints

65 Influence of Tool Profile on Mechanical Properties of Friction Stir Welded Aluminium Alloy 5083

Authors: A. Chandrashekar, H. N. Reddappa, B. S. Ajaykumar

Abstract:

A Friction stir welding tool is a critical component to the success of the process. The tool typically consists of a rotating round shoulder and a threaded cylindrical pin that heats the work piece, mostly by friction, and moves the softened alloy around it to form the joint. In this research work, an attempt has been made to investigate the relationship between FSW variables mainly tool profile, rotating speed, welding speed and the mechanical properties (tensile strength, yield strength, percentage elongation, and micro hardness) of friction stir welded aluminum alloy 5083 joints. From the experimental details, it can be assessed that the joint produced by using Triflute profile tool has contribute superior mechanical and structural properties as compared to Tapered unthreaded & Threaded tool for 1000rpm.

Keywords: Friction stir welding, Tool profile, Rotating speed, Strength, Speed ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
64 Panel Zone Rigidity Effects on Special Steel Moment-Resisting Frames According to the Performance Based Design

Authors: Mahmoud Miri, Morteza Naghipour, Amir Kashiryfar

Abstract:

The unanticipated destruct of more of the steel moment frames in Northridge earthquake, altered class of regard to the beamto- column connections in moment frames. Panel zone is one the significant part of joints which, it-s stiffness and rigidity has an important effect on the behavior and ductility of the frame. Specifically that behavior of panel zone has a very significant effect on the special moment frames. In this paper , meanwhile the relations for modeling of panel zone in frames are expressed , special moment frames with different spans and stories were studied in the way of performance-based design. The frames designed in according with Iranian steel building code. The effect of panel zone is also considered and in the case of non-existence of performance level, by changing in intimacies and parameter of panel zone, performance level is considered.

Keywords: steel moment frame, panel zone, performance based design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4588
63 Comparison of different Channel Modeling Techniques used in the BPLC Systems

Authors: Justinian Anatory, Nelson Theethayi

Abstract:

The paper compares different channel models used for modeling Broadband Power-Line Communication (BPLC) system. The models compared are Zimmermann and Dostert, Philipps, Anatory et al and Anatory et al generalized Transmission Line (TL) model. The validity of each model was compared in time domain with ATP-EMTP software which uses transmission line approach. It is found that for a power-line network with minimum number of branches all the models give similar signal/pulse time responses compared with ATP-EMTP software; however, Zimmermann and Dostert model indicates the same amplitude but different time delay. It is observed that when the numbers of branches are increased only generalized TL theory approach results are comparable with ATPEMTP results. Also the Multi-Carrier Spread Spectrum (MC-SS) system was applied to check the implication of such behavior on the modulation schemes. It is observed that using Philipps on the underground cable can predict the performance up to 25dB better than other channel models which can misread the actual performance of the system. Also modified Zimmermann and Dostert under multipath can predict a better performance of about 5dB better than the actual predicted by Generalized TL theory. It is therefore suggested for a realistic BPLC system design and analyses the model based on generalized TL theory be used.

Keywords: Broadband Power line Channel Models, loadimpedance, Branched network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
62 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
61 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.

Keywords: Beta Alloys, Biomedical Applications, Titanium Alloys, Young's Modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7717
60 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.

Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
59 Dynamic Modeling of Tow Flexible Link Manipulators

Authors: E. Abedi, A. Ahmadi Nadooshan, S. Salehi

Abstract:

Modeling and vibration of a flexible link manipulator with tow flexible links and rigid joints are investigated which can include an arbitrary number of flexible links. Hamilton principle and finite element approach is proposed to model the dynamics of flexible manipulators. The links are assumed to be deflection due to bending. The association between elastic displacements of links is investigated, took into account the coupling effects of elastic motion and rigid motion. Flexible links are treated as Euler-Bernoulli beams and the shear deformation is thus abandoned. The dynamic behavior due to flexibility of links is well demonstrated through numerical simulation. The rigid-body motion and elastic deformations are separated by linearizing the equations of motion around the rigid body reference path. Simulation results are shown on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics remarkably well. The proposed method can be used in both dynamic simulation and controller design.

Keywords: Flexible manipulator, flexible link, dynamicmodeling, end point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
58 Microscopic Analysis of Welded Dental Alloys

Authors: S. Porojan, L. Sandu, F. Topalâ

Abstract:

Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.

Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
57 Analysis of Different Resins in Web-to-Flange Joints

Authors: W. F. Ribeiro, J. L. N. Góes

Abstract:

The industrial process adds to engineering wood products features absent in solid wood, with homogeneous structure and reduced defects, improved physical and mechanical properties, bio-deterioration, resistance and better dimensional stability, improving quality and increasing the reliability of structures wood. These features combined with using fast-growing trees, make them environmentally ecological products, ensuring a strong consumer market. The wood I-joists are manufactured by the industrial profiles bonding flange and web, an important aspect of the production of wooden I-beams is the adhesive joint that bonds the web to the flange. Adhesives can effectively transfer and distribute stresses, thereby increasing the strength and stiffness of the composite. The objective of this study is to evaluate different resins in a shear strain specimens with the aim of analyzing the most efficient resin and possibility of using national products, reducing the manufacturing cost. First was conducted a literature review, where established the geometry and materials generally used, then established and analyzed 8 national resins and produced six specimens for each.

Keywords: Engineered wood products, structural resin, wood i-joist.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
56 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics

Authors: N. B. Mahesh Kumar, K. Premalatha

Abstract:

The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.

Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
55 Analytical Study on a Longitudinal Joints of the Slab-Type Modular Bridges

Authors: Sang-Yoon Lee, Jung-Mi Lee, Hyeong-Yeol Kim, Jae-Joon Song

Abstract:

In this study, a longitudinal joint connection was proposed for the short-span slab-type modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. A finite element based parameter analysis was conducted to design the shape and the dimensions of the longitudinal joint connection. Numbers of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load at the corner of the shear key and the cross-sectional area of the joint, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the cracking loads and the efficiency factors obtained from the finite element analysis.

Keywords: precast, slab bridge, modular bridge, shear key

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
54 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
53 In-Plane Shear Tests of Prefabricated Masonry Panel System with Two-Component Polyurethane Adhesive

Authors: E. Fehling, P. Capewell

Abstract:

In recent years, the importance of masonry glued by polyurethane adhesive has increased. In 2021, the Institute of Structural Engineering of the University of Kassel was commissioned to carry out quasi-static in-plane shear tests on prefabricated brick masonry panel systems with 2K PUR adhesive in order to investigate the load-bearing behavior during earthquakes. In addition to the usual measurement of deformations using displacement transducers, all tests were documented using an optical measuring system, which was used to determine the surface strains and deformations of the test walls. To compare the results with conventional mortar walls, additional reference tests were carried out on test specimens with thin-bed mortar joints. This article summarizes the results of the test program and provides a comparison between the load-bearing behavior of masonry bonded with polyurethane adhesive and thin-bed mortar in order to enable realistic non-linear modeling.

Keywords: Glued Masonry, in-plane tests, shear resistance, polyurethane adhesive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
52 An Efficient 3D Animation Data Reduction Using Frame Removal

Authors: Jinsuk Yang, Choongjae Joo, Kyoungsu Oh

Abstract:

Existing methods in which the animation data of all frames are stored and reproduced as with vertex animation cannot be used in mobile device environments because these methods use large amounts of the memory. So 3D animation data reduction methods aimed at solving this problem have been extensively studied thus far and we propose a new method as follows. First, we find and remove frames in which motion changes are small out of all animation frames and store only the animation data of remaining frames (involving large motion changes). When playing the animation, the removed frame areas are reconstructed using the interpolation of the remaining frames. Our key contribution is to calculate the accelerations of the joints of individual frames and the standard deviations of the accelerations using the information of joint locations in the relevant 3D model in order to find and delete frames in which motion changes are small. Our methods can reduce data sizes by approximately 50% or more while providing quality which is not much lower compared to original animations. Therefore, our method is expected to be usefully used in mobile device environments or other environments in which memory sizes are limited.

Keywords: Data Reduction, Interpolation, Vertex Animation, 3D Animation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
51 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements

Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks

Abstract:

Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.

Keywords: Aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
50 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: Exoskeleton-upper limb system, gravity compensation, model free terminal sliding mode, robustness analysis, Monte Carlo, H∞ methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
49 Process Parameters Optimization for Pulsed TIG Welding of 70/30 Cu-Ni Alloy Welds Using Taguchi Technique

Authors: M. P. Chakravarthy, N. Ramanaiah, B. S. K.Sundara Siva Rao

Abstract:

Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of pulse TIG welded 70/30 Cu-Ni alloy. In order to evaluate the effect of process parameters such as pulse frequency, peak current, base current and welding speed on tensile strength of Pulsed current TIG welded 70/30 Cu-Ni alloy of 5 mm thickness, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined at 95% confidence level. The results indicate that the Pulse frequency, peak current, welding speed and base current are the significant parameters in deciding the tensile strength of the joint. The predicted optimal values of tensile strength of Pulsed current Gas tungsten arc welding (PC GTAW) of 70/30 Cu-Ni alloy welds are 368.8MPa.

Keywords: 70/30 Cu-Ni alloy, pulsed current GTAW, mechanical properties, Taguchi technique, analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
48 Modeling and Design of an Active Leg Orthosis for Tumble Protection

Authors: Eileen Chih-Ying Yang, Liang-Han Wu, Chieh-Min Chang

Abstract:

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Keywords: Active leg orthosis, Tumble protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
47 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
46 Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi

Abstract:

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.

Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072
45 Experimental Investigation on Flexural Behaviors in Framed Structure of PST Method

Authors: S. Hong, H. Kim, D. Cho, S. Park

Abstract:

Existing underground pipe jacking methods use a reinforcing rod in a steel tube to obtain structural stiffness. However, some problems such as inconvenience of works and expensive materials resulted from limited working space and reinforcing works are existed. To resolve these problems, a new pipe jacking method, namely PST (Prestressed Segment Tunnel) method, was developed which used joint to connect the steel segment and form erection structure. For evaluating the flexural capacity of the PST method structure, a experimental test was conducted. The parameters considered in the test were span-to-depth ratio of segment, diameter of steel tube at the corner, prestressing force, and welding of joint. The flexural behaviours with the effect of load capacity in serviceability state according to different parameters were examined.. The frame with long segments could increase flexural stiffness and the specimen with large diameter of concave corner showed excellent resistance ability to the negative moment. In addition, welding of joints increased the flexural capacity.

Keywords: PST method, Pipe jacking method, Flexural behavior, Prestressed concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
44 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo

Abstract:

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Keywords: Training, rehabilitation, SCI patient, welfare, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
43 Geophysical Investigation of Abnormal Seepages in Goronyo Dam Sokoto, North Western Nigeria Using Self-Potential Method

Authors: A. I. Augie, M. Saleh, A. A. Gado

Abstract:

In this research, Self-Potential (SP) method was employed to locate anomalous electrical conductivity located in Goronyo area and also to determine the condition of the embankment of the dam. SP data were plotted against distance along with the profile and spacing of electrode using surfer software (version 12). High and low zones of SP values were identified along the right and left abutments of the dam reservoir. The regions with high SP values were described to be high tendency of fluid flow associate with wet sandy soil. These zones have the SP values ranging from 200 mV and above. High SP values were due to the high moisture content that may lead to the seepage of water leaking through this zone. The zones with high SP values occupied Profiles S1, S2, S3, S4 and S5 indicating the presence of potential seepage paths within the subsurface of the embankment. These regions of seepage were identified as weak zones and potential pathways through which water could be lost from the dam reservoir. The SP values for the regions range from 250 m to 400 m (S1), 306 m to 400 m (S2), 192 m to 400 m (S3), 48 m to 200 m (S4) and 7 m to 170 m (S5) with their corresponding maximum depths of 30 m, 28 m, 28 m, 30 m and 26 m respectively. However, zones of low SP values in the overburden were observed which shows the presence of intact regions, which may be due to the compactness and dryness around the dam. The weak zones were considered as geological features (such as fractures, joints, and faults) that have undermined the integrity of the dam structure, which has led to the abnormal seepage.

Keywords: Self-potential, subsurface, seepage, condition and dam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
42 Modular Hybrid Robots for Safe Human-Robot Interaction

Authors: J. Radojicic, D. Surdilovic, G. Schreck

Abstract:

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
41 An Improved Tie Force Method for Progressive Collapse Resistance of Precast Concrete Cross Wall Structures

Authors: M. Tohidi, J. Yang, C. Baniotopoulos

Abstract:

Progressive collapse of buildings typically occurs  when abnormal loading conditions cause local damages, which leads  to a chain reaction of failure and ultimately catastrophic collapse. The  tie force (TF) method is one of the main design approaches for  progressive collapse. As the TF method is a simplified method, further  investigations on the reliability of the method is necessary. This study  aims to develop an improved TF method to design the cross wall  structures for progressive collapse. To this end, the pullout behavior of  strands in grout was firstly analyzed; and then, by considering the tie  force-slip relationship in the friction stage together with the catenary  action mechanism, a comprehensive analytical method was developed.  The reliability of this approach is verified by the experimental results  of concrete block pullout tests and full scale floor-to-floor joints tests  undertaken by Portland Cement Association (PCA). Discrepancies in  the tie force between the analytical results and codified specifications  have suggested the deficiency of TF method, hence an improved  model based on the analytical results has been proposed to address this  concern.

 

Keywords: Cross wall, progressive collapse, ties force method, catenary, analytical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3687
40 Development of UiTM Robotic Prosthetic Hand

Authors: M. Amlie A. Kasim, Ahsana Aqilah, Ahmed Jaffar, Cheng Yee Low, Roseleena Jaafar, M. Saiful Bahari, Armansyah

Abstract:

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Keywords: Prosthetic hand, Biomimetic actuation, Shape Memory Alloy, Tactile sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
39 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites

Authors: Siong W. Lee, Kang H. Tan, En H. Yang

Abstract:

This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.

Keywords: Bond stress, high performance fiber reinforced cement composites, slip, strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
38 Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405

Authors: Kh.Farhangdoust, H.Kamankesh

Abstract:

Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.

Keywords: Chassis, cross member, residual stress, resistancespot weld.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
37 Sliding Joints and Soil-Structure Interaction

Authors: Radim Cajka, Pavlina Mateckova, Martina Janulikova, Marie Stara

Abstract:

Use of a sliding joint is an effective method to decrease the stress in foundation structure where there is a horizontal deformation of subsoil (areas afflicted with underground mining) or horizontal deformation of a foundation structure (pre-stressed foundations, creep, shrinkage, temperature deformation). A convenient material for a sliding joint is a bitumen asphalt belt. Experiments for different types of bitumen belts were undertaken at the Faculty of Civil Engineering - VSB Technical University of Ostrava in 2008. This year an extension of the 2008 experiments is in progress and the shear resistance of a slide joint is being tested as a function of temperature in a temperature controlled room. In this paper experimental results of temperature dependant shear resistance are presented. The result of the experiments should be the sliding joint shear resistance as a function of deformation velocity and temperature. This relationship is used for numerical analysis of stress/strain relation between foundation structure and subsoil. Using a rheological slide joint could lead to a decrease of the reinforcement amount, and contribute to higher reliability of foundation structure and thus enable design of more durable and sustainable building structures.

Keywords: Pre-stressed foundations, sliding joint, soil-structure interaction, subsoil horizontal deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
36 Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator

Authors: M. Pala Prasad Reddy, Jeevamma Jacob

Abstract:

Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.

 

Keywords: Flexible link manipulator, AMM, FEM, LS-DYNA, Bang-bang torque input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915