Search results for: Moving object detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2424

Search results for: Moving object detection

384 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: Data quality, feature selection, probability distribution, string classification, string length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
383 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: Conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
382 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies

Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox

Abstract:

A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.

Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
381 Semi-automatic Background Detection in Microscopic Images

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Ludovico Carozza, Filippo Piccinini

Abstract:

The last years have seen an increasing use of image analysis techniques in the field of biomedical imaging, in particular in microscopic imaging. The basic step for most of the image analysis techniques relies on a background image free of objects of interest, whether they are cells or histological samples, to perform further analysis, such as segmentation or mosaicing. Commonly, this image consists of an empty field acquired in advance. However, many times achieving an empty field could not be feasible. Or else, this could be different from the background region of the sample really being studied, because of the interaction with the organic matter. At last, it could be expensive, for instance in case of live cell analyses. We propose a non parametric and general purpose approach where the background is built automatically stemming from a sequence of images containing even objects of interest. The amount of area, in each image, free of objects just affects the overall speed to obtain the background. Experiments with different kinds of microscopic images prove the effectiveness of our approach.

Keywords: Microscopy, flat field correction, background estimation, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
380 Microscopic Analysis of Welded Dental Alloys

Authors: S. Porojan, L. Sandu, F. Topalâ

Abstract:

Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterally and with filler material, proper for each base metal. Macroscopic visual inspection was performed to assess carefully the irregularities in the welds. Electron microscopy allowed detection of discontinuities that are not visible to the eye and revealing details regarding location, trajectory, morphology and size of discontinuities. Supplementing visual control with microscopic analysis allows to detect small discontinuities, which escapes the macroscopic control and to make a detailed study of the weld.

Keywords: base metal alloys, fixed prosthodontics, microplasmawelding, visual inspection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
379 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta

Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari

Abstract:

This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.

Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
378 Validation of an EEG Classification Procedure Aimed at Physiological Interpretation

Authors: M. Guillard, M. Philippe, F. Laurent, J. Martinerie, J. P. Lachaux, G. Florence

Abstract:

One approach to assess neural networks underlying the cognitive processes is to study Electroencephalography (EEG). It is relevant to detect various mental states and characterize the physiological changes that help to discriminate two situations. That is why an EEG (amplitude, synchrony) classification procedure is described, validated. The two situations are "eyes closed" and "eyes opened" in order to study the "alpha blocking response" phenomenon in the occipital area. The good classification rate between the two situations is 92.1 % (SD = 3.5%) The spatial distribution of a part of amplitude features that helps to discriminate the two situations are located in the occipital regions that permit to validate the localization method. Moreover amplitude features in frontal areas, "short distant" synchrony in frontal areas and "long distant" synchrony between frontal and occipital area also help to discriminate between the two situations. This procedure will be used for mental fatigue detection.

Keywords: Classification, EEG Synchrony, alpha, resting situation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
377 Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks

Authors: Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, Cheol Min Kim

Abstract:

This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.

Keywords: sensor network, intelligent farm, middleware, event detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
376 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis

Abstract:

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

Keywords: Elastostatic, inverse problem, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
375 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
374 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours

Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic

Abstract:

Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.

Keywords: player number, soccer video, HSV color space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
373 Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control

Authors: N. H. Mvungi

Abstract:

Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.

Keywords: Sensorless, SR motor, saturation effects, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
372 Estimation of Skew Angle in Binary Document Images Using Hough Transform

Authors: Nandini N., Srikanta Murthy K., G. Hemantha Kumar

Abstract:

This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.

Keywords: Dilation, Document processing, Hough transform, Optical Character Recognition, Skew estimation, and Thinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3266
371 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
370 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: Ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
369 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method

Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang

Abstract:

Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.

Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
368 A New Performance Characterization of Transient Analysis Method

Authors: José Peralta, Gabriela Peretti, Eduardo Romero, Carlos Marqués

Abstract:

This paper proposes a new performance characterization for the test strategy intended for second order filters denominated Transient Analysis Method (TRAM). We evaluate the ability of the addressed test strategy for detecting deviation faults under simultaneous statistical fluctuation of the non-faulty parameters. For this purpose, we use Monte Carlo simulations and a fault model that considers as faulty only one component of the filter under test while the others components adopt random values (within their tolerance band) obtained from their statistical distributions. The new data reported here show (for the filters under study) the presence of hard-to-test components and relatively low fault coverage values for small deviation faults. These results suggest that the fault coverage value obtained using only nominal values for the non-faulty components (the traditional evaluation of TRAM) seem to be a poor predictor of the test performance.

Keywords: testing, fault analysis, analog filter test, parametric faults detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
367 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
366 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
365 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
364 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 335
363 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission

Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong

Abstract:

Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.

Keywords: Medical Image Watermarking (MIW), e-health system, error correction, Hamming code, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
362 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(VI) Ions in Industrial Effluents

Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi

Abstract:

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N,N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by flame atomic absorption spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300mg; flow rates 2.0mL min-1 of solution and 2.0mL min-1 of eluent (2.0mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Keywords: Styrofoam waste, Polymeric resin, Preconcentration, Speciation, Cr(III)/Cr(VI) ions, FAAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
361 Mobile Robot Path Planning Utilizing Probability Recursive Function

Authors: Ethar H. Khalil, Bahaa I. Kazem

Abstract:

In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.

Keywords: Mobile robot, path planning, Bezier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
360 Wavelet based ANN Approach for Transformer Protection

Authors: Okan Özgönenel

Abstract:

This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.

Keywords: Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
359 Video-based Face Recognition: A Survey

Authors: Huafeng Wang, Yunhong Wang, Yuan Cao

Abstract:

During the past several years, face recognition in video has received significant attention. Not only the wide range of commercial and law enforcement applications, but also the availability of feasible technologies after several decades of research contributes to the trend. Although current face recognition systems have reached a certain level of maturity, their development is still limited by the conditions brought about by many real applications. For example, recognition images of video sequence acquired in an open environment with changes in illumination and/or pose and/or facial occlusion and/or low resolution of acquired image remains a largely unsolved problem. In other words, current algorithms are yet to be developed. This paper provides an up-to-date survey of video-based face recognition research. To present a comprehensive survey, we categorize existing video based recognition approaches and present detailed descriptions of representative methods within each category. In addition, relevant topics such as real time detection, real time tracking for video, issues such as illumination, pose, 3D and low resolution are covered.

Keywords: Face recognition, video-based, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121
358 Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes

Authors: Peter Drotar, Juraj Gazda, Pavol Galajda, Dusan Kocur

Abstract:

The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.

Keywords: HPA, MC-CDMA, microstatistic filter, multi-user receivers, PAPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
357 Medical Image Segmentation Using Deformable Models and Local Fitting Binary

Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki

Abstract:

This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.

Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
356 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
355 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: Bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012