Search results for: Heat loss
187 Effect of Cold, Warm or Contrast Therapy on Controlling Knee Osteoarthritis Associated Problems
Authors: Amal E. Shehata, Manal E. Fareed
Abstract:
Osteoarthritis (OA) is the most prevalent and far common debilitating form of arthritis which can be defined as a degenerative condition affecting synovial joint. Patients suffering from osteoarthritis often complain of dull ache pain on movement. Physical agents can fight the painful process when correctly indicated and used such as heat or cold therapy Aim. This study was carried out to: Compare the effect of cold, warm and contrast therapy on controlling knee osteoarthritis associated problems. Setting: The study was carried out in orthopedic outpatient clinics of Menoufia University and teaching Hospitals, Egypt. Sample: A convenient sample of 60 adult patients with unilateral knee osteoarthritis. Tools: three tools were utilized to collect the data. Tool I : An interviewing questionnaire. It comprised of three parts covering sociodemographic data, medical data and adverse effects of the treatment protocol. Tool II : Knee Injury and Osteoarthritis Outcome Score (KOOS) It consists of five main parts. Tool II1 : 0-10 Numeric pain rating scale. Results: reveled that the total knee symptoms score was decreased from moderate symptoms pre intervention to mild symptoms after warm and contrast method of therapy, but the contrast therapy had significant effect in reducing the knee symptoms and pain than the other symptoms. Conclusions: all of the three methods of therapy resulted in improvement in all knee symptoms and pain but the most appropriate protocol of treatment to relive symptoms and pain was contrast therapy.
Keywords: Knee Osteoarthritis, Cold, Warm and Contrast Therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5735186 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.
Keywords: Road safety, crash prediction, exploratory analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83185 Improvement of Stator Slot Structure based on Insulation Stresses Analysis in HV Generator
Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi
Abstract:
High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetical and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791184 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.
Keywords: Electrowinning, intercell bars, PV energy, current modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623183 An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set
Authors: M. Santhalakshmi, P Suganthi
Abstract:
Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.Keywords: Wireless sensor network, connected dominant set, clustering, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129182 Early Registration : Criterion to Improve Communication-Inter Agents in Mobile-IP Protocol
Authors: Hossam el-ddin Mostafa, Pavel Čičak
Abstract:
In IETF RFC 2002, Mobile-IP was developed to enable Laptobs to maintain Internet connectivity while moving between subnets. However, the packet loss that comes from switching subnets arises because network connectivity is lost while the mobile host registers with the foreign agent and this encounters large end-to-end packet delays. The criterion to initiate a simple and fast full-duplex connection between the home agent and foreign agent, to reduce the roaming duration, is a very important issue to be considered by a work in this paper. State-transition Petri-Nets of the modeling scenario-based CIA: communication inter-agents procedure as an extension to the basic Mobile-IP registration process was designed and manipulated to describe the system in discrete events. The heuristic of configuration file during practical Setup session for registration parameters, on Cisco platform Router-1760 using IOS 12.3 (15)T and TFTP server S/W is created. Finally, stand-alone performance simulations from Simulink Matlab, within each subnet and also between subnets, are illustrated for reporting better end-toend packet delays. Results verified the effectiveness of our Mathcad analytical manipulation and experimental implementation. It showed lower values of end-to-end packet delay for Mobile-IP using CIA procedure-based early registration. Furthermore, it reported packets flow between subnets to improve losses between subnets.Keywords: Cisco configuration, handoff, Mobile-IP, packetdelay, Petri-Nets, registration process, Simulink
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391181 War Heritage: Different Perceptions of the Dominant Discourse among Visitors to the "Adem Jashari" Memorial Complex in Prekaz, Kosovo
Authors: Zana Llonçari Osmani, Nita Llonçari
Abstract:
The paper delves into the significance of the Prekaz Memorial in Kosovo's national identity formation, particularly regarding the traumatic events of the 1998-99 War. The spatial layout and architectural features of the Memorial are analysed, focusing on its role as a place of remembrance and hope. Through qualitative surveys and critical discourse analysis, the essay explores visitor perceptions of the Memorial's narrative and design elements. Factors such as geographical, emotional, and temporal proximity to the war influence visitors' interpretations, with varying degrees of emphasis on loss, sacrifice, and patriotism. It highlights the Memorial's ability to evoke emotions of pride and sadness among visitors, underscoring the power of authentic artefacts in shaping collective memory. However, the paper also criticizes the Memorial's dominant discourse and advocates for a more inclusive approach to memorialization, one that acknowledges all facets of history and ensures that no story is left untold or forgotten. Despite its success in solidifying its place in society, the essay calls for the Memorial's evolution towards a more comprehensive and dynamic dialogue to resonate with future generations. The essay stresses the importance of memorialization efforts in honouring the past, fostering healing, and promoting inclusive dialogue. It argues for a broader narrative scope that encompasses diverse perspectives, thus ensuring the vitality and relevance of historical memory for generations to come.
Keywords: Critical discourse analysis, memorialisation, national discourse, public rhetoric, war tourism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63180 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets
Authors: S. D. El Wakil
Abstract:
The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.
Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162179 Battery Grading Algorithm in 2nd-Life Repurposing Li-ion Battery System
Authors: Ya Lv, Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat
Abstract:
This article presents a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as energy storage system (ESS). Most of the 2nd-life retired battery systems in market have module/pack-level state of health (SOH) indicator, which is utilized for guiding appropriate depth of discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end of life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance the system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.
Keywords: Battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841178 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.
Keywords: Automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53177 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron
Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni
Abstract:
The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.Keywords: Bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777176 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software
Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven
Abstract:
Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.
Keywords: Aeroacoustics, Ffowcs-Williams and Hawkings equations, SST k-ω turbulence model, Noise Disturbance, 3D Blade Profile, 2D Blade Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860175 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.
Keywords: Natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048174 An Exploratory Case Study of the Interference of Erotic Transference in the Longevity of Psychoanalytic Treatment
Authors: M. Javid, R. Hassan, J. DeSilva
Abstract:
In this exploratory case study, a 37-year-old male patient who previously terminated treatment after four months of therapy with a different therapist begins anew with a 38-year-old female therapist and undergoes a similar cycle of premature termination, with added discourse caused by erotic transference. Process notes and records of the therapy treatment indicate that during the short course of treatment, the patient explored his difficulties navigating personal relationships, both current and past, and his difficulties coping with hypochondriasis. The therapist becomes tasked with not only navigating the patient’s inner conflict but also how she relates to the patient in the countertransference process while maintaining professional boundaries. This includes empathizing with the patient while also experiencing discomfort in the erotic transference from a professional standpoint. When the patient terminates once more, the therapist reflects on the possible reasons for termination. This includes the patient’s difficulties with tolerating interpretations, which cause him to blame himself for past events. These interpretations were also very frequent, contributing to the emotional burden the patient experienced. The therapist reflected on the use of interpretation versus exploration of the patient’s feelings and how exploring his feelings, including his feelings towards her, would have allowed for an opportunity to explore the emotions that troubled him more deeply. This includes exploring the patient’s anger and fear, which stem from unresolved conflicts from his childhood. Moreover, the erotic transference served as an enactment of previous experiences in which the patient feared losing what he loved, leading him to opt for premature termination instead of losing his ability to control the relationship and experience loss.
Keywords: Countertransference, erotic transference, premature termination, therapist-client boundaries, transference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82173 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite
Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni
Abstract:
There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.Keywords: CubeSat, Nano-satellite, shock, testing, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719172 On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process
Authors: Reza Yousefian, Michael A. Kia, Mehrdad Hosseini Zadeh
Abstract:
The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.Keywords: Laparoscopic surgery, ligation process, locking mechanism, Shape Memory Alloy (SMA) actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437171 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique
Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong
Abstract:
Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.
Keywords: Glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087170 Effect of High Injection Pressure on Mixture Formation, Burning Process and Combustion Characteristics in Diesel Combustion
Authors: Amir Khalid, B. Manshoor
Abstract:
The mixture formation prior to the ignition process plays as a key element in the diesel combustion. Parametric studies of mixture formation and ignition process in various injection parameter has received considerable attention in potential for reducing emissions. Purpose of this study is to clarify the effects of injection pressure on mixture formation and ignition especially during ignition delay period, which have to be significantly influences throughout the combustion process and exhaust emissions. This study investigated the effects of injection pressure on diesel combustion fundamentally using rapid compression machine. The detail behavior of mixture formation during ignition delay period was investigated using the schlieren photography system with a high speed camera. This method can capture spray evaporation, spray interference, mixture formation and flame development clearly with real images. Ignition process and flame development were investigated by direct photography method using a light sensitive high-speed color digital video camera. The injection pressure and air motion are important variable that strongly affect to the fuel evaporation, endothermic and prolysis process during ignition delay. An increased injection pressure makes spray tip penetration longer and promotes a greater amount of fuel-air mixing occurs during ignition delay. A greater quantity of fuel prepared during ignition delay period thus predominantly promotes more rapid heat release.Keywords: Mixture Formation, Diesel Combustion, Ignition Process, Spray, Rapid Compression Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843169 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.
Keywords: Electrical conductivity, electrophoretic deposition, p-type Bi2Te3, thermoelectric materials, thick films.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007168 Monitorization of Junction Temperature Using a Thermal-Test-Device
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.
Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management, measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711167 Histopathological Effects of Trichodiniasis in Farmed Freshwater Rainbow trout, Oncorhynchus mykiss in West of Iran
Authors: Z. Khoshnood, R. Khoshnood
Abstract:
The aim of present study was to monitor the presence of Trichodina sp. in Rainbow trout, Oncorhynchus mykiss collected from various fish farms in the western provinces of Iran during January, 2013- January, 2014. Out of 675 sampled fish 335, (49.16%) were infested with Trichodina. The highest prevalence was observed in the spring and winter followed by autumn and summer. In general, the intensity of infection was low except in cases where outbreaks of Trichodiniasis endangered the survival of fish in some ponds. In light infestation Trichodina is usually present on gills, fins and skin of apparently healthy fish. Clinical signs of Trichodiniasis only appear on fish with heavy infections and cases of moderate ones that are usually exposed to one or more stress factors including, rough handling during transportation from ponds, overcrowdness, malnutrition, high of free ammonia and low of oxygen concentration. Clinical signs of Trichodiniasis in sampled fish were sluggish movement, loss of appetite, black coloration, necrosis and ulcer on different parts of the body, detached scales and excessive accumulation of mucous in gill pouches. The most obvious histopathological changes in diseased fish were sloughing of the epidermal layer, aggregation of leucocytes and melanine-carrying cells (between the dermis and hypodermis) and proliferative changes including hyperplasia and hypertrophy of the epithelial lining cells of gill filaments which resulted in fusion of secondary lamellae. Control of Trichodiniasis, has been achieved by formalin bath treatment at a concentration of 250 ppm for one hour.
Keywords: Gill, Histopathology, Rainbow trout, Trichodina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755166 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610165 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation
Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn
Abstract:
Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871164 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review
Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi
Abstract:
Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.
Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396163 Combination of Tensile Strength and Elongation of Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: M. Veerasham
Abstract:
The refractory high entropy alloys are potential materials for high-temperature applications because of their ability to retain high strength up to 1600°C. However, their practical applications were limited due to poor elongation at room temperature. Therefore, decreasing the average valence electron concentrations (VEC) is an effective design strategy to improve the intrinsic ductility of refractory high entropy alloys. In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step reverse rolling up to a 90% reduction in thickness. Subsequently, the reverse rolled 90% samples were utilized for annealing treatment at 800°C and 1000°C for 1 h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains body-centered cubic (BCC) single-phase; upon annealing at 800 °C, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C, respectively. The reverse rolled condition and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high ultimate tensile strength (UTS) without compromising loss of ductility called “strength-ductility” trade-off. The reverse-rolled 90% and annealing treatment carried out at temperature about 1000°C for 1 h consist of UTS 1430 MPa and 1556 MPa with an appreciable amount of 21% and 20% elongation, respectively. The development of hierarchical microstructure prevailed for the annealed 1000°C which led to the simultaneous increase in tensile strength and elongation.
Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546162 Replacement of Commercial Anti-Corrosion Material with a More Effective and Cost Efficient Compound Based on Electrolytic System Simulation
Authors: Saeid Khajehmandali, Fattah Mollakarimi, Zohreh Seyf
Abstract:
There was a high rate of corrosion in Pyrolysis Gasoline Hydrogenation (PGH) unit of Arak Petrochemical Company (ARPC), and it caused some operational problem in this plant. A commercial chemical had been used as anti-corrosion in the depentanizer column overhead in order to control the corrosion rate. Injection of commercial corrosion inhibitor caused some operational problems such as fouling in some heat exchangers. It was proposed to replace this commercial material with another more effective trouble free, and well-known additive by R&D and operation specialists. At first, the system was simulated by commercial simulation software in electrolytic system to specify low pH points inside the plant. After a very comprehensive study of the situation and technical investigations ,ammonia / monoethanol amine solution was proposed as neutralizer or corrosion inhibitor to be injected in a suitable point of the plant. For this purpose, the depentanizer column and its accessories system was simulated again in case of this solution injection. According to the simulation results, injection of new anticorrosion substance has no any side effect on C5 cut product and operating conditions of the column. The corrosion rate will be cotrolled, if the pH remains at the range of 6.5 to 8 . Aactual plant test run was also carried out by injection of ammonia / monoethanol amine solution at the rate of 0.6 Kg/hr and the results of iron content of water samples and corrosion test coupons confirmed the simulation results. Now, ammonia / monoethanol amine solution is injected to a suitable pint inside the plant and corrosion rate has decreased significantly.Keywords: Corrosion, Pyrolysis Gasoline, Simulation, Corrosion test copoun.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369161 Anthropometric Correlates of Balance Performance in Non-Institutionalized Elderly
Authors: Okafor UAC, Ibeabuchimn, Omidina JO, Igwesi-Chidobe CN, Akinbo SRA
Abstract:
Purpose: The fear of falling is a major concern among the elderly. Sixty-five percent of individuals older than 60 years of age experience loss of balance often on a daily basis. Therefore, balance assessment in the elderly deserves special attention due to its importance in functional mobility and safety. This study aimed at assessing balance performance and comparing some anthropometric parameters among a Nigerian non-institutionalized elderly population.
Methods: Sixty one elderly subjects (31 males and 30 females) participated in this study. Their ages ranged between 62 and 84 years. Ability to maintain balance was assessed using Functional Reach Test (FRT) and Sharpened Romberg Test (SRT). Anthropometric data including age, weight, height, arm length, leg length, bi-acromial breadth, foot length and trunk length were also collected. Analysis was done using Pearson’s Product Moment Correlation Coefficient and Independent T-test, while level of significance was set as p<0.05.
Results: Age-related significant relationship was observed between balance performance and bi-acromial breadth among the elderly population. Gender and visual input also had a significant influence on balance performance. Other anthropometric variables (age, weight, height, arm length, leg length, foot length and trunk length) showed no significant relationship with balance performance among this elderly sample.
Conclusion: Only specific anthropometric variables may affect balance performances among the healthy elderly. The study further highlights the need for routine assessment of both static and dynamic balance to detect and appropriately manage aging-related diseases which could affect balance in the elderly.
Keywords: Balance Performance, Anthropometry, Non-institutionalized Elderly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432160 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940159 The Solar Wall in the Italian Climates
Authors: F. Stazi, C. Di Perna, C. Filiaci, A. Stazi
Abstract:
Passive systems were born with the purpose of the greatest exploitation of solar energy in cold climates and high altitudes. They spread themselves until the 80-s all over the world without any attention to the specific climate and the summer behavior; this caused the deactivation of the systems due to a series of problems connected to the summer overheating, the complex management and the rising of the dust. Until today the European regulation limits only the winter consumptions without any attention to the summer behavior but, the recent European EN 15251 underlines the relevance of the indoor comfort, and the necessity of the analytic studies validation by monitoring case studies. In the porpose paper we demonstrate that the solar wall is an efficient system both from thermal comfort and energy saving point of view and it is the most suitable for our temperate climates because it can be used as a passive cooling sistem too. In particular the paper present an experimental and numerical analisys carried out on a case study with nine different solar passive systems in Ancona, Italy. We carried out a detailed study of the lodging provided by the solar wall by the monitoring and the evaluation of the indoor conditions. Analyzing the monitored data, on the base of recognized models of comfort (ISO, ASHRAE, Givoni-s BBCC), is emerged that the solar wall has an optimal behavior in the middle seasons. In winter phase this passive system gives more advantages in terms of energy consumptions than the other systems, because it gives greater heat gain and therefore smaller consumptions. In summer, when outside air temperature return in the mean seasonal value, the indoor comfort is optimal thanks to an efficient transversal ventilation activated from the same wall.Keywords: Building envelope, energy saving, passive solarwall, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654158 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377