Search results for: optimal estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2587

Search results for: optimal estimation

637 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning

Authors: K. Sivasubramanian, K. B. Jayanthi

Abstract:

Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.

Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
636 Biodiesel Fuel Production by Methanolysis of Fish Oil Derived from the Discarded Parts of Fish Catalyzed by Carica papaya Lipase

Authors: P. Pinyaphong, P. Sriburi, S. Phutrakul

Abstract:

In this paper, naturally immobilized lipase, Carica papaya lipase, catalyzed biodiesel production from fish oil was studied. The refined fish oil, extracted from the discarded parts of fish, was used as a starting material for biodiesel production. The effects of molar ratio of oil: methanol, lipase dosage, initial water activity of lipase, temperature and solvent were investigated. It was found that Carica papaya lipase was suitable for methanolysis of fish oil to produce methyl ester. The maximum yield of methyl ester could reach up to 83% with the optimal reaction conditions: oil: methanol molar ratio of 1: 4, 20% (based on oil) of lipase, initial water activity of lipase at 0.23 and 20% (based on oil) of tert-butanol at 40oC after 18 h of reaction time. There was negligible loss in lipase activity even after repeated use for 30 cycles.

Keywords: biodiesel fuel production, methanolysis, fish oil, Carica papaya lipase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3325
635 The Feedback Control for Distributed Systems

Authors: Kamil Aida-zade, C. Ardil

Abstract:

We study the problem of synthesis of lumped sources control for the objects with distributed parameters on the basis of continuous observation of phase state at given points of object. In the proposed approach the phase state space (phase space) is beforehand somehow partitioned at observable points into given subsets (zones). The synthesizing control actions therewith are taken from the class of piecewise constant functions. The current values of control actions are determined by the subset of phase space that contains the aggregate of current states of object at the observable points (in these states control actions take constant values). In the paper such synthesized control actions are called zone control actions. A technique to obtain optimal values of zone control actions with the use of smooth optimization methods is given. With this aim, the formulas of objective functional gradient in the space of zone control actions are obtained.

Keywords: Feedback control, distributed systems, smooth optimization methods, lumped control synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
634 Stochastic Subspace Modelling of Turbulence

Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen

Abstract:

Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.

Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
633 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
632 Identifying and Adopting Latter Instruments Determining the Sustainable Company Competitiveness

Authors: Andrej Miklošík, Petra Horváthová, Štefan Žák

Abstract:

Nowadays companies in all sectors are looking for the sources of competitive advantages. Holistic marketing approach searches for their emergence based on the integration of all components and elements across the organization. Modern marketing sees the sources of competitive advantage in implementing the latest managerial practices, motivation, intelligent project management, knowledge management, collaborative marketing, CSR and, in the recent years, also in the business process optimization. With the use of modern tools including business process management and business process modelling the company can markedly increase its internal efficiency which can lead not only to lowering the costs but to creating the environment for optimal customer care, positive corporate culture and for origination of innovations as well. In the article the authors analyze the recent trend in this area and introduce suggestions to companies to identify and optimize the key processes that have a significant impact of the company´s competitiveness.

Keywords: business process optimization, competitive advantage, corporate social responsibility, knowledge management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
631 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
630 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
629 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
628 A Particle Swarm Optimization Approach for the Earliness-Tardiness No-Wait Flowshop Scheduling Problem

Authors: Sedighe Arabameri, Nasser Salmasi

Abstract:

In this researcha particle swarm optimization (PSO) algorithm is proposedfor no-wait flowshopsequence dependent setuptime scheduling problem with weighted earliness-tardiness penalties as the criterion (|, |Σ   " ).The smallestposition value (SPV) rule is applied to convert the continuous value of position vector of particles in PSO to job permutations.A timing algorithm is generated to find the optimal schedule and calculate the objective function value of a given sequence in PSO algorithm. Twodifferent neighborhood structures are applied to improve the solution quality of PSO algorithm.The first one is based on variable neighborhood search (VNS) and the second one is a simple one with invariable structure. In order to compare the performance of two neighborhood structures, random test problems are generated and solved by both neighborhood approaches.Computational results show that the VNS algorithmhas better performance than the other one especially for the large sized problems.

Keywords: minimization of summation of weighed earliness and tardiness, no-wait flowshop scheduling, particle swarm optimization, sequence dependent setup times

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
627 Digital Redesign of Interval Systems via Particle Swarm Optimization

Authors: Chen-Chien Hsu, Chun-Hui Gao

Abstract:

In this paper, a PSO-based approach is proposed to derive a digital controller for redesigned digital systems having an interval plant based on resemblance of the extremal gain/phase margins. By combining the interval plant and a controller as an interval system, extremal GM/PM associated with the loop transfer function can be obtained. The design problem is then formulated as an optimization problem of an aggregated error function revealing the deviation on the extremal GM/PM between the redesigned digital system and its continuous counterpart, and subsequently optimized by a proposed PSO to obtain an optimal set of parameters for the digital controller. Computer simulations have shown that frequency responses of the redesigned digital system having an interval plant bare a better resemblance to its continuous-time counter part by the incorporation of a PSO-derived digital controller in comparison to those obtained using existing open-loop discretization methods.

Keywords: Digital redesign, Extremal systems, Particle swarm optimization, Uncertain interval systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
626 A Novel Model for Simultaneously Minimising Costs and Risks in Just-in-Time Systems Using Multi-Backup Suppliers: Part 1- Modelling

Authors: Faraj El Dabee, Romeo Marian, Yousef Amer

Abstract:

Just-In-Time (JIT) is a lean manufacturing tool, which provides the benefits of efficiency, and of minimizing unnecessary costs for many organisations. However, the risks arising from these benefits have been disregarded. These risks impact on system processes disrupting the whole supply chain. This paper proposes an inventory model that can simultaneously reduce costs and risks in JIT systems. This model is developed to ascertain an optimal ordering strategy for procuring raw materials by using regular multi-external and local backup suppliers to reduce the total cost of the products, and at the same time to reduce the risks arising from this cost reduction within production systems. Some results that will be illustrated in the second part of this paper are presented.

Keywords: Lean manufacturing, Just-in-Time (JIT), production system, cost-risk reduction, inventory model, eternal supplier, local backup supplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
625 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
624 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
623 Fuzzy Ideology based Long Term Load Forecasting

Authors: Jagadish H. Pujar

Abstract:

Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).

Keywords: Fuzzy Logic Control (FLC), Data DependantFactors(DDF), Model Dependent Factors(MDF), StatisticalError(SE), Short Term Load Forecasting (STLF), MiscellaneousError(ME).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
622 Novel PES Membrane Reinforced by Nano-WS2 for Enhanced Fouling Resistance

Authors: Jiuyang Lin, Wenyuan Ye, Arcadio Sotto, Bart Van der Bruggen

Abstract:

Application of nanoparticles as additives in membrane synthesis for improving the resistance of membranes against fouling has triggered recent interest in new membrane types. However, most nanoparticle-enhanced membranes suffer from the tradeoff between permeability and selectivity. In this study, nano-WS2 was explored as the additive in membrane synthesis by non-solvent induced phase separation. Blended PES-WS2 flat-sheet membranes with the incorporation of ultra-low concentrations of nanoparticles (from 0.025 to 0.25%, WS2/PES ratio) were manufactured and investigated in terms of permeability, fouling resistance and solute rejection. Remarkably, a significant enhancement in the permeability was observed as a result of the incorporation of ultra-low fractions of nano-WS2 to the membrane structure. Optimal permeability values were obtained for modified membranes with 0.10% nanoparticle/polymer concentration ratios. Furthermore, fouling resistance and solute rejection were significantly improved by the incorporation of nanoparticles into the membrane matrix. Specifically, fouling resistance of modified membrane can increase by around 50%.

Keywords: Nano-WS2, Nanoparticle enhanced hybrid membrane, Ultralow concentration, Antifouling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
621 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
620 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4135
619 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
618 GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System

Authors: M. Elsisi, M. Soliman, M. A. S. Aboelela, W. Mansour

Abstract:

This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.

Keywords: Gravitational Search Algorithm (GSA), Load Frequency Control (LFC), Dual Proportional-Integral (DPI) controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
617 Cloning and Over Expression of an Aspergillus niger XP Phytase Gene (phyA) in Pichia pastoris

Authors: Ngo Thanh Xuan, Mai Thi Hang, Vu Nguyen Thanh

Abstract:

A. niger XP isolated from Vietnam produces very low amount of acidic phytase with optimal pH at 2.5 and 5.5. The phytase production of this strain was successfully improved through gene cloning and expression. A 1.4 - kb DNA fragment containing the coding region of the phyA gene was amplified by PCR and inserted into the expression vector pPICZαA with a signal peptide α- factor, under the control of AOX1 promoter. The recombined plasmid was transformed into the host strain P. pastoris KM71H and X33 by electroporation. Both host strains could efficiently express and secret phytase. The multicopy strains were screened for over expression of phytase. All the selected multicopy strains of P. pastoris X33 were examined for phytase activity, the maximum phytase yield of 1329 IU/ml was obtained after 4 days of incubation in medium BMM. The recombinant protein with MW of 97.4 KW showed to be the only one protein secreted in the culture broth. Multicopy transformant P. pastoris X33 supposed to be potential candidate for producing the commercial preparation of phytase.

Keywords: Aspergillus niger XP, cloning, over expression, Pichia pastoris, phyA , phytase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
616 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk

Authors: F. Gökgöz, M. E. Atmaca

Abstract:

Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.

Keywords: Electricity market, portfolio optimization, risk management, Sharpe ratio, value at risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
615 SFCL Location Selection Considering Reliability Indices

Authors: Wook-Won Kim, Sung-Yul Kim, Jin-O Kim

Abstract:

The fault current levels through the electric devices have a significant impact on failure probability. New fault current results in exceeding the rated capacity of circuit breaker and switching equipments and changes operation characteristic of overcurrent relay. In order to solve these problems, SFCL (Superconducting Fault Current Limiter) has rising as one of new alternatives so as to improve these problems. A fault current reduction differs depending on installed location. Therefore, a location of SFCL is very important. Also, SFCL decreases the fault current, and it prevents surrounding protective devices to be exposed to fault current, it then will bring a change of reliability. In this paper, we propose method which determines the optimal location when SFCL is installed in power system. In addition, the reliability about the power system which SFCL was installed is evaluated. The efficiency and effectiveness of this method are also shown by numerical examples and the reliability indices are evaluated in this study at each load points. These results show a reliability change of a system when SFCL was installed.

Keywords: Superconducting Fault Current Limiter, OptimalLocation, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
614 Quantitative Genetics Researches on Milk Protein Systems of Romanian Grey Steppe Breed

Authors: V. Maciuc, Şt. Creangă, I. Gîlcă, V. Ujică

Abstract:

The paper makes part from a complex research project on Romanian Grey Steppe, a unique breed in terms of biological and cultural-historical importance, on the verge of extinction and which has been included in a preservation programme of genetic resources from Romania. The study of genetic polymorphism of protean fractions, especially kappa-casein, and the genotype relations of these lactoproteins with some quantitative and qualitative features of milk yield represents a current theme and a novelty for this breed. In the estimation of the genetic parameters we used R.E.M.L. (Restricted Maximum Likelihood) method. The main lactoprotein from milk, kappa - casein (K-cz), characterized in the specialized literature as a feature having a high degree of hereditary transmission, behaves as such in the nucleus under study, a value also confirmed by the heritability coefficient (h2 = 0.57 %). We must mention the medium values for milk and fat quantity (h2=0.26, 0.29 %) and the fat and protein percentage from milk having a high hereditary influence h2 = 0.71 - 0.63 %. Correlations between kappa-casein and the milk quantity are negative and strong. Between kappa-casein and other qualitative features of milk (fat content 0.58-0.67 % and protein content 0.77- 0.87%), there are positive and very strong correlations. At the same time, between kappa-casein and β casein (β-cz), β lactoglobulin (β- lg) respectively, correlations are positive having high values (0.37 – 0.45 %), indicating the same causes and determining factors for the two groups of features.

Keywords: breed, genetic preservation, lactoproteins, Romanian Grey Steppe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
613 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
612 Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO

Authors: Bilel Gassara, Mahmoud Abdellaoui, Nouri Masmoud

Abstract:

The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.

Keywords: GSM/DCS/DECT/UMTS/WiMax, ISPD PLL, keep and capture range, Multi-Band, Synthesizer, Wireless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
611 The Applicability of Distillation as an Alternative Nuclear Reprocessing Method

Authors: Dominik Böhm, Konrad Czerski

Abstract:

A customized two-stage model has been developed to simulate, analyse, and visualize distillation of actinides as a useful alternative low-pressure separation method in the nuclear recycling cases. Under the most optimal conditions of idealized thermodynamic equilibrium stages and under total reflux of distillate the investigated cases of chloride systems for the separation of such actinides are (A) UCl4-CsCl-PuCl3 and (B) ThCl4-NaCl-PuCl3. Simulatively, uranium tetrachloride in case A is successfully separated by distillation into a six-stage distillation column, and thorium tetrachloride from case B into an eight-stage distillation column. For this, a permissible mole fraction value of 1E-06 has been assumed for the residual impurification degree. With further separation effort of eleven to seventeen required separation stages, the monochlorides of plutonium trichloride from both systems A and B are simulatively shown to be separated as high pure distillation products.

Keywords: Conceptual design of a pyroprocessing unit, molten salt recovery, simulation of total-reflux distillation column, used nuclear fuel reprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
610 Proposal of a Model Supporting Decision-Making Based On Multi-Objective Optimization Analysis on Information Security Risk Treatment

Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.

Keywords: Information security risk treatment, Selection of risk measures, Risk acceptanceand Multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
609 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
608 Non-Homogeneous Layered Fiber Reinforced Concrete

Authors: Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100mm ×100mm ×400mmwith layers of non-homogeneously distributed fibers inside them were fabricated.

Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.

Keywords: Fiber reinforced concrete, 4-point bending, steel fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009