Search results for: multiple regression
189 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms
Authors: T. P. Singh, Vijay Gautam
Abstract:
Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cupchain type metering device was used to place each single gladiolus corm in furrow at required spacing while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.Keywords: Coefficient of uniformity, corm spacing, gladiolus planter, mechanization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151188 Implementing an Intuitive Reasoner with a Large Weather Database
Authors: Yung-Chien Sun, O. Grant Clark
Abstract:
In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.Keywords: Artificial intelligence, intuition, knowledge acquisition, limited certainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383187 Recycling in Bogotá: A SWOT Analysis of Three Associations to Evaluate the Integrating the Informal Sector into Solid Waste Management
Authors: Clara Inés Pardo Martínez, William H. Alfonso Piña
Abstract:
In emerging economies, recycling is an opportunity for the cities to increase the lifespan of sanitary landfills, reduce the costs of the solid waste management, decrease the environmental problems of the waste treatment through reincorporate waste in the productive cycle and protect and develop people’s livelihoods of informal waste pickers. However, few studies have analysed the possibilities and strategies to integrate formal and informal sectors in the solid waste management for the benefit of both. This study seek to make a strength, weakness, opportunity, and threat (SWOT) analysis in three recycling associations of Bogotá with the aim to understand and determine the situation of recycling from perspective of informal sector in its transition to enter as authorized waste providers. Data used in the analysis are derived from multiple strategies such as literature review, the Bogota’s recycling database, focus group meetings, governmental reports, national laws and regulations and specific interviews with key stakeholders. Results of this study show as the main stakeholders of formal and informal sector of waste management can identify the internal and internal conditions of recycling in Bogotá. Several strategies were designed based on the SWOTs determined, could be useful for Bogotá to advance and promote recycling as a key strategy for integrated sustainable waste management in the city.
Keywords: Bogotá, recycling, solid waste management, SWOT analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7893186 A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal
Authors: Wann-Ming Wey
Abstract:
The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.
Keywords: Analytic Network Process, Built Environment, Quality Function Deployment, Urban Design, Urban Renewal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089185 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis
Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat
Abstract:
Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.
Keywords: Controlled release, drug delivery system, glucosamine, Pluronic® F-127, thermoreversible hydrogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673184 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework
Authors: T. P. Athira, Gibin Chacko George
Abstract:
This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.
Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163183 Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities
Authors: Alemayehu Agizew Woldeamanuel, Mekonnen Maschal Tarekegn, Raj Mohan Balakrishina
Abstract:
Composting is one of the conventional techniques adopted for organic waste management but the practice is very limited in emerging cities despite that most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia by addressing the composting practice, quality of compost and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used and the maturation period ranged from four to 10 weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr6+ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users.
Keywords: Composting, emerging city, organic waste management, urban agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066182 Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review
Authors: A. A. Ghanim
Abstract:
The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources.Keywords: Saudi Arabia, water resources, water crisis, treated wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938181 Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences
Authors: Abu Salim Mustafa
Abstract:
The comparisons of mycobacterial genomes have identified several Mycobacterium tuberculosis-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to M. tuberculosis-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested M. tuberculosis-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified M. tuberculosis-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis.
Keywords: Genomic regions of differences, Mycobacterium tuberculosis, peptides, serodiagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930180 Software Vulnerability Markets: Discoverers and Buyers
Authors: Abdullah M. Algarni, Yashwant K. Malaiya
Abstract:
Some of the key aspects of vulnerability—discovery, dissemination, and disclosure—have received some attention recently. However, the role of interaction among the vulnerability discoverers and vulnerability acquirers has not yet been adequately addressed. Our study suggests that a major percentage of discoverers, a majority in some cases, are unaffiliated with the software developers and thus are free to disseminate the vulnerabilities they discover in any way they like. As a result, multiple vulnerability markets have emerged. In some of these markets, the exchange is regulated, but in others, there is little or no regulation. In recent vulnerability discovery literature, the vulnerability discoverers have remained anonymous individuals. Although there has been an attempt to model the level of their efforts, information regarding their identities, modes of operation, and what they are doing with the discovered vulnerabilities has not been explored.
Reports of buying and selling of the vulnerabilities are now appearing in the press; however, the existence of such markets requires validation, and the natures of the markets need to be analyzed. To address this need, we have attempted to collect detailed information. We have identified the most prolific vulnerability discoverers throughout the past decade and examined their motivation and methods. A large percentage of these discoverers are located in Eastern and Western Europe and in the Far East. We have contacted several of them in order to collect firsthand information regarding their techniques, motivations, and involvement in the vulnerability markets. We examine why many of the discoverers appear to retire after a highly successful vulnerability-finding career. The paper identifies the actual vulnerability markets, rather than the hypothetical ideal markets that are often examined. The emergence of worldwide government agencies as vulnerability buyers has significant implications. We discuss potential factors that can impact the risk to society and the need for detailed exploration.
Keywords: Risk management, software security, vulnerability discoverers, vulnerability markets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263179 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.
Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734178 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541177 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302176 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.
Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875175 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey
Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu
Abstract:
In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12; Mauremys rivulata = 14; Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. A total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The multiple antibiotic resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.
Keywords: Amphibian, Bacteriological Quality, Reptile, Antibiotic & Heavy Metal Resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246174 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces
Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon
Abstract:
There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.
Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624173 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry
Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine
Abstract:
The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580172 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.
Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144171 A State Aggregation Approach to Singularly Perturbed Markov Reward Processes
Authors: Dali Zhang, Baoqun Yin, Hongsheng Xi
Abstract:
In this paper, we propose a single sample path based algorithm with state aggregation to optimize the average rewards of singularly perturbed Markov reward processes (SPMRPs) with a large scale state spaces. It is assumed that such a reward process depend on a set of parameters. Differing from the other kinds of Markov chain, SPMRPs have their own hierarchical structure. Based on this special structure, our algorithm can alleviate the load in the optimization for performance. Moreover, our method can be applied on line because of its evolution with the sample path simulated. Compared with the original algorithm applied on these problems of general MRPs, a new gradient formula for average reward performance metric in SPMRPs is brought in, which will be proved in Appendix, and then based on these gradients, the schedule of the iteration algorithm is presented, which is based on a single sample path, and eventually a special case in which parameters only dominate the disturbance matrices will be analyzed, and a precise comparison with be displayed between our algorithm with the old ones which is aim to solve these problems in general Markov reward processes. When applied in SPMRPs, our method will approach a fast pace in these cases. Furthermore, to illustrate the practical value of SPMRPs, a simple example in multiple programming in computer systems will be listed and simulated. Corresponding to some practical model, physical meanings of SPMRPs in networks of queues will be clarified.Keywords: Singularly perturbed Markov processes, Gradient of average reward, Differential reward, State aggregation, Perturbed close network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636170 Impact of the Electricity Market Prices on Energy Storage Operation during the COVID-19 Pandemic
Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić
Abstract:
With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.
Keywords: Electrical market prices, electricity market, energy storage optimization, mixed integer linear programming, MILP, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517169 An Effect of Organic Supplements on Stimulating Growth of Dendrobium Protocorms and Seedlings
Authors: Sunthari Tharapan, Chockpisit Thepsithar, Kullanart Obsuwan
Abstract:
This study was aimed to investigate the effect of various organic supplements on growth and development of Dendrobium discolor’s protocorms and seedlings growth of Dendrobium Judy Rutz. Protocorms of Dendrobium discolor with 2.0 cm. in diameter and seedlings of Dendrobium Judy Rutz at the same size (0.5 cm. height) were sub-cultured on Hyponex medium supplemented with cow milk (CM), soy milk (SM), potato extract (PE) and peptone (P) for 2 months. The protocorms were developed to seedlings in all treatments after cultured for 2 months. However, the best results were found on Hyponex medium supplemented with P was the best in which the maximum fresh and dry weight and maximum shoot height were obtained in this treatment statistically different (p ≤ 0.05) to other treatments. Moreover, Hyponex medium supplemented with P also stimulated the maximum mean number of 5.7 shoots per explant which also showed statistically different (p ≤ 0.05) when compared to other treatments. The results of growth of Dendrobium Judy Rutz seedlings indicated the medium supplemented with 100 mL/L PE enhanced the maximum fresh and dry weigh per explants with significantly different (p ≤ 0.05) in fresh weight from other treatments including the control medium without any organic supplementation. However, the dry weight was not significantly different (p ≤ 0.05) from medium supplemented with SM and P. There was multiple shoots induction in all media with or without organic supplementation ranging from 2.6 to 3 shoots per explants. The maximum shoot height was also obtained in the seedlings cultured on medium supplemented with PE while the longest root length was found in medium supplemented with SM.
Keywords: Fresh weight, in vitro propagation, orchid, plant height.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667168 A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider
Authors: J. C. Cabanillas-Noris, M. I. Martínez-Hernández, I. León-Monzón
Abstract:
The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.Keywords: AD0, ALICE, DCS, LHC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398167 To Cloudify or Not to Cloudify
Authors: Laila Yasir Al-Harthy, Ali H. Al-Badi
Abstract:
As an emerging business model, cloud computing has been initiated to satisfy the need of organizations and to push Information Technology as a utility. The shift to the cloud has changed the way Information Technology departments are managed traditionally and has raised many concerns for both, public and private sectors.
The purpose of this study is to investigate the possibility of cloud computing services replacing services provided traditionally by IT departments. Therefore, it aims to 1) explore whether organizations in Oman are ready to move to the cloud; 2) identify the deciding factors leading to the adoption or rejection of cloud computing services in Oman; and 3) provide two case studies, one for a successful Cloud provider and another for a successful adopter.
This paper is based on multiple research methods including conducting a set of interviews with cloud service providers and current cloud users in Oman; and collecting data using questionnaires from experts in the field and potential users of cloud services.
Despite the limitation of bandwidth capacity and Internet coverage offered in Oman that create a challenge in adopting the cloud, it was found that many information technology professionals are encouraged to move to the cloud while few are resistant to change.
The recent launch of a new Omani cloud service provider and the entrance of other international cloud service providers in the Omani market make this research extremely valuable as it aims to provide real-life experience as well as two case studies on the successful provision of cloud services and the successful adoption of these services.
Keywords: Cloud computing, cloud deployment models, cloud service models and deciding factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293166 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.
Keywords: Fruit thinning, horticultural field, portable devices, sensor technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983165 Relationship between Mental Health and Food Access among Healthcare College Students in a Snowy Area in Japan
Authors: Yuki Irie, Shota Ogawa, Hitomi Kosugi, Hiromitsu Shinozaki
Abstract:
Dropout rates in higher educational institutions pose significant challenges for both students and institutions, with poor mental health (MH) emerging as a key risk factor. Healthcare college students, including medical students, are particularly vulnerable to MH issues due to the demanding academic schedules they face. Poor mental health (MH) would be considered as a key risk factor for dropout from higher educational institutions that pose significant challenges for both students and institutions. And, inadequate food access (FA) has been related to poor MH. Given that targeted students may experience multiple risk factors for poor MH and vulnerable FA, the study aims to clarify the relationship between MH and FA to enhance student well-being. A cross-sectional design was used to explore the association between MH status and FA among 421 students (147 male, 274 female). Participants completed two questionnaires assessing MH and FA during winter 2022. The mean MH score was 6.7 ± 4.6, with higher scores indicating worse MH (max. score 27). While year-round FA showed no significant association with MH, FA during winter was significantly associated with MH (p = 0.01). Although car ownership did not directly impact MH, it was significantly associated with FA (p < 0.01), thus indirectly influencing MH. Our findings underscore the importance of FA in promoting MH, particularly during winter. Adopting a lifestyle that facilitates easier FA may be beneficial for MH, given its indirect association with MH outcomes. These insights emphasize the significance of addressing FA-related challenges to enhance student’s mental well-being.
Keywords: Mental health, food access, co-medical students, lifestyle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171164 Dynamic Threshold Adjustment Approach For Neural Networks
Authors: Hamza A. Ali, Waleed A. J. Rasheed
Abstract:
The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.
Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627163 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design
Authors: Boon Yih Mah
Abstract:
Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework for the development of a web-based instruction (WBI), which contributes towards instructional design and language development. WeCWI divides its contribution in instructional design into macro and micro perspectives. In macro perspective, being a 21st century educator by disseminating knowledge and sharing ideas with the in-class and global learners is initiated. By leveraging the virtue of technology, WeCWI aims to transform an educator into an aggregator, curator, publisher, social networker and ultimately, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective in instructional design draws attention to the pedagogical approaches focusing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches through free reading and enterprises, technology adds new dimensions and expands the boundaries of learning capacity. Lastly, WeCWI also imparts the fundamental theories and models for web-based instructors’ awareness such as interactionist theory, cognitive information processing (CIP) theory, computer-mediated communication (CMC), e-learning interactionalbased model, inquiry models, sensory mind model, and leaning styles model.
Keywords: WeCWI, instructional discovery, technological discovery, pedagogical discovery, theoretical discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235162 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004161 Managing Iterations in Product Design and Development
Authors: K. Aravindhan, Trishit Bandyopadhyay, Mahesh Mehendale, Supriya Kumar De
Abstract:
The inherent iterative nature of product design and development poses significant challenge to reduce the product design and development time (PD). In order to shorten the time to market, organizations have adopted concurrent development where multiple specialized tasks and design activities are carried out in parallel. Iterative nature of work coupled with the overlap of activities can result in unpredictable time to completion and significant rework. Many of the products have missed the time to market window due to unanticipated or rather unplanned iteration and rework. The iterative and often overlapped processes introduce greater amounts of ambiguity in design and development, where the traditional methods and tools of project management provide less value. In this context, identifying critical metrics to understand the iteration probability is an open research area where significant contribution can be made given that iteration has been the key driver of cost and schedule risk in PD projects. Two important questions that the proposed study attempts to address are: Can we predict and identify the number of iterations in a product development flow? Can we provide managerial insights for a better control over iteration? The proposal introduces the concept of decision points and using this concept intends to develop metrics that can provide managerial insights into iteration predictability. By characterizing the product development flow as a network of decision points, the proposed research intends to delve further into iteration probability and attempts to provide more clarity.
Keywords: Decision Points, Iteration, Product Design, Rework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192160 A Process of Forming a Single Competitive Factor in the Digital Camera Industry
Authors: Kiyohiro Yamazaki
Abstract:
This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.
Keywords: Digital camera industry, product evolution trajectory, product platform, unification of competitive factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652