Search results for: machine tools
438 Seasonal Influence on Environmental Indicators of Beach Waste
Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman
Abstract:
The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.Keywords: Beach solid waste, environmental indicators, quali-quantitative analysis, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404437 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534436 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315435 Model Canvas and Process for Educational Game Design in Outcome-Based Education
Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro
Abstract:
This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.Keywords: Constructive alignment, constructivist theory, educational game, outcome-based education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862434 Digital Learning and Entrepreneurship Education: Changing Paradigms
Authors: Shivangi Agrawal, Hsiu-I Ting
Abstract:
Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g. online entrepreneurship education courses and programs) and other digital tools (e.g. digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.
Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719433 Design of a Statistics Lecture for Multidisciplinary Postgraduate Students Using a Range of Tools and Techniques
Abstract:
Teaching statistics is a critical and challenging issue especially to students from multidisciplinary and diverse postgraduate backgrounds. Postgraduate research students require statistics not only for the design of experiments; but also for data analysis. Students often perceive statistics as a complex and technical subject; thus, they leave data analysis to the last moment. The lecture needs to be simple and inclusive at the same time to make it comprehendible and address the learning needs of each student. Therefore, the aim of this work was to design a simple and comprehendible statistics lecture to postgraduate research students regarding ‘Research plan, design and data collection’. The lecture adopted the constructive alignment learning theory which facilitated the learning environments for the students. The learning environment utilized a student-centered approach and used interactive learning environment with in-class discussion, handouts and electronic voting system handsets. For evaluation of the lecture, formative assessment was made with in-class discussions and poll questions which were introduced during and after the lecture. The whole approach showed to be effective in creating a learning environment to the students who were able to apply the concepts addressed to their individual research projects.
Keywords: Teaching, statistics, lecture, multidisciplinary, postgraduate, learning theory, learning environment, student-centered approach, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139432 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973431 Design of Mobile Teaching for Students Collaborative Learning in Distance Higher Education
Authors: Lisbeth Amhag
Abstract:
The aim of the study is to describe and analyze design of mobile teaching for students collaborative learning in distance higher education with a focus on mobile technologies as online webinars (web-based seminars or conferencing) by using laptops, smart phones, or tablets. These multimedia tools can provide face-toface interactions, recorded flipped classroom videos and parallel chat communications. The data collection consists of interviews with 22 students and observations of online face-to-face webinars, as well two surveys. Theoretically, the study joins the research tradition of Computer Supported Collaborative learning, CSCL, as well as Computer Self-Efficacy, CSE concerned with individuals’ media and information literacy. Important conclusions from the study demonstrated mobile interactions increased student centered learning. As the students were appreciating the working methods, they became more engaged and motivated. The mobile technology using among student also contributes to increased flexibility between space and place, as well as media and information literacy.
Keywords: Computer self-efficacy, computer supported collaborative learning, distance and open learning, educational design and technologies, media and information literacy, mobile learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917430 A Medical Images Based Retrieval System using Soft Computing Techniques
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.Keywords: CBIR, GA, Rough sets, CBMIR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610429 Determination of the Optimum Size of Building Stone Blocks: Case Study of Delichai Travertine Mine
Authors: Hesam Sedaghat Nejad, Navid Hosseini, Arash Nikvar Hassani
Abstract:
Determination of the optimum block size with high profitability is one of the significant parameters in designation of the building stone mines. The aim of this study was to determine the optimum dimensions of building stone blocks in Delichai travertine mine of Damavand in Tehran province through combining the effective parameters proven in determination of the optimum dimensions in building stones such as the spacing of joints and gaps, extraction tools constraints with the help of modeling by Gemcom software. To this end, following simulation of the topography of the mine, the block model was prepared and then in order to use spacing joints and discontinuities as a limiting factor, the existing joints set was added to the model. Since only one almost horizontal joint set with a slope of 5 degrees was available, this factor was effective only in determining the optimum height of the block, and thus to determine the longitudinal and transverse optimum dimensions of the extracted block, the power of available loader in the mine was considered as the secondary limiting factor. According to the aforementioned factors, the optimal block size in this mine was measured as 3.4×4×7 meter.
Keywords: Building stone, optimum block size, Delichai Travertine Mine, loader power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248428 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.
Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742427 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.
Keywords: Tri-metallic, upsetting, copper, brass, steel, aluminum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141426 Twitter Sentiment Analysis during the Lockdown on New Zealand
Authors: Smah Doeban Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.
Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591425 The Enhancement of Training of Military Pilots Using Psychophysiological Methods
Authors: G. Kloudova, M. Stehlik
Abstract:
Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.
Keywords: Cognitive effort, human performance, military pilots, psychophysiological methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185424 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.
Keywords: CNC machining, Six Sigma, Surface roughness, Taguchi methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060423 The Use of Music Therapy to Improve Non-Verbal Communication Skills for Children with Autism
Authors: Maria Vinca Novenia
Abstract:
The number of school-aged children with autism in Indonesia has been increasing each year. Autism is a developmental disorder which can be diagnosed in childhood. One of the symptoms is the lack of communication skills. Music therapy is known as an effective treatment for children with autism. Music elements and structures create a good space for children with autism to express their feelings and communicate their thoughts. School-aged children are expected to be able to communicate non-verbally very well, but children with autism experience the difficulties of communicating non-verbally. The aim of this research is to analyze the significance of music therapy treatment to improve non-verbal communication tools for children with autism. This research informs teachers and parents on how music can be used as a media to communicate with children with autism. The qualitative method is used to analyze this research, while the result is described with the microanalysis technique. The result is measured specifically from the whole experiment, hours of every week, minutes of every session, and second of every moment. The samples taken are four school-aged children with autism in the age range of six to 11 years old. This research is conducted within four months started with observation, interview, literature research, and direct experiment. The result demonstrates that music therapy could be effectively used as a non-verbal communication tool for children with autism, such as changes of body gesture, eye contact, and facial expression.Keywords: Autism, non-verbal communication, microanalysis, music therapy, school-aged children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124422 Managing IT Departments in Higher Education Institutes: Coping with the Exponentially Growing Needs and Expectations
Authors: Balqees A. Al-Thuhli, Ali H. Al-Badi, Khamis Al-Gharbi
Abstract:
Information technology is changing rapidly and the users’ expectations are also growing. Dealing with these changes in information technology, while satisfying the users’ needs and expectations is a big challenge. IT managers need to explore new mechanisms/strategies to enable them to cope with such challenges.
The objectives of this research are to identify the significant challenges that might face IT managers in higher education institutes in the face of the high and ever growing customer expectations and to propose possible solutions to cope with such high-speed changes in information technology.
To achieve these objectives, interviews with the IT professionals from different higher education institutes in Oman were conducted. In addition, documentation (printed and online) related to these institutions were studied and an intensive literature review of published work was examined.
The findings of this research are expected to give a better understanding of the challenges that might face the IT managers at higher education institutes. This acquired understanding is expected to highlight the importance of being adaptable and fast in keeping up with the ever-growing technological changes. Moreover, adopting different tools and technologies could assist IT managers in developing their organisations’ IT policies and strategies.
Keywords: Information technology, IT rapid changes, CIO roles, challenges, IT managers, coping mechanisms, users' expectations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601421 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734420 Optimized Facial Features-based Age Classification
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park
Abstract:
The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050419 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864418 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517417 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding
Authors: S. Shubha, B. N. Meera
Abstract:
Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.
Keywords: Electric Force, Interactive, Representation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237416 Strengthening the HCI Approaches in the Software Development Process
Authors: Rogayah A. Majid, Nor Laila Md. Noor, Wan Adilah Wan Adnan
Abstract:
User-Centered Design (UCD), Usability Engineering (UE) and Participatory Design (PD) are the common Human- Computer Interaction (HCI) approaches that are practiced in the software development process, focusing towards issues and matters concerning user involvement. It overlooks the organizational perspective of HCI integration within the software development organization. The Management Information Systems (MIS) perspective of HCI takes a managerial and organizational context to view the effectiveness of integrating HCI in the software development process. The Human-Centered Design (HCD) which encompasses all of the human aspects including aesthetic and ergonomic, is claimed as to provide a better approach in strengthening the HCI approaches to strengthen the software development process. In determining the effectiveness of HCD in the software development process, this paper presents the findings of a content analysis of HCI approaches by viewing those approaches as a technology which integrates user requirements, ranging from the top management to other stake holder in the software development process. The findings obtained show that HCD approach is a technology that emphasizes on human, tools and knowledge in strengthening the HCI approaches to strengthen the software development process in the quest to produce a sustainable, usable and useful software product.
Keywords: Human-Centered Design (HCD), Management Information Systems (MIS), Participatory Design (PD), User- Centered Design (UCD), Usability Engineering (UE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244415 Isolation and Identification of Diacylglycerol Acyltransferase Type- 2 (GAT2) Genes from Three Egyptian Olive Cultivars
Authors: Yahia I. Mohamed, Ahmed I. Marzouk, Mohamed A. Yacout
Abstract:
Aim of this work was to study the genetic basis for oil accumulation in olive fruit via tracking DGAT2 (Diacylglycerol acyltransferase type-2) gene in three Egyptian Origen Olive cultivars namely Toffahi, Hamed and Maraki using molecular marker techniques and bioinformatics tools. Results illustrate that, firstly: specific genomic band of Maraki cultivars was identified as DGAT2 (Diacylglycerol acyltransferase type-2) and identical for this gene in Olea europaea with 100% of similarity. Secondly, differential genomic band of Maraki cultivars which produced from RAPD fingerprinting technique reflected predicted distinguished sequence which identified as DGAT2 (Diacylglycerol acyltransferase type-2) in Fragaria vesca subsp. Vesca with 76% of sequential similarity. Third and finally, specific genomic specific band of Hamed cultivars was identified as two fragments, 1- Olea europaea cultivar Koroneiki diacylglycerol acyltransferase type 2 mRNA, complete cds with two matches regions with 99% or 2- Predicted: Fragaria vesca subsp. vesca diacylglycerol O-acyltransferase 2-like (LOC101313050), mRNA with 86 % of similarity.
Keywords: Olea europaea, fingerprinting, Diacylglycerol acyltransferase type- 2 (DGAT2).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419414 Computer Simulation of Low Volume Roads Made from Recycled Materials
Authors: Aleš Florian, Lenka Ševelová
Abstract:
Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.
Keywords: FEA, FEM, geotechnical materials, low volume roads, pavement, triaxial test, Young modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631413 The Role of Food System in Promoting Environmental Planning
Authors: Rayeheh Khatami, Toktam Hanaei, Mohammad Reza Mansouri Daneshvar
Abstract:
Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as food security, poverty and environmental problems. In fact, urban agriculture plays an important role in food system, which can provide citizens' income and become one of the components of economic, social and environmental systems. The purpose of this paper is to analyze the urban agriculture and urban food systems in order to understand the impact of urban foods production on environmental planning in non-western city region context. To achieve such objective, we carry out a case study in Mashhad city of Iran by using qualitative approaches. A survey on documentary studies and planning tools integrate with face to face interview with experts which explain the role of food system in environmental planning process. The paper extends the use of food in the environmental planning, specifically to examine this role to create agricultural garden as a mean to improve agricultural system in non-western country. The paper is concluded with a set of recommendations for researchers and policymakers who seek to create spaces in order to implement urban agriculture in cities for food justice.
Keywords: Urban agriculture, food system, environmental planning, agricultural garden, Mashhad.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191412 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.
Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997411 Development of EPID-based Real time Dose Verification for Dynamic IMRT
Authors: Todsaporn Fuangrod, Daryl J. O'Connor, Boyd MC McCurdy, Peter B. Greer
Abstract:
An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the <=-evaluation method was used for dose comparison, with two types of comparison processes; individual image and cumulative dose comparison monitored. The outputs of the system are the <=-map, the percent of <=<1, and mean-<= versus time, all in real time. Two strategies were used to test the system, including an error detection test and a clinical data test. The system can monitor the actual dose delivery compared with the treatment plan data or previous treatment dose delivery that means a radiation therapist is able to switch off the machine when the error is detected.Keywords: real-time dose verification, EPID dosimetry, simulation, dynamic IMRT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195410 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies
Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G.M. Petrakis
Abstract:
Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called affective disorders, which is characterized by great mood swings. We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s nonresponse to treatment. We propose an architecture as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.
Keywords: Bipolar disorder, intelligent systems patient monitoring, semantic web technologies, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445409 A Quantitative Tool for Analyze Process Design
Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río
Abstract:
Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.
Keywords: Characteristics matrix, covariance structure analysis, LISREL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602