Search results for: programme learning outcomes
585 Intelligent Dynamic Decision-making Model Using in Robot's Movement
Authors: Yufang Cheng, Hsiu-Hua Yang
Abstract:
This work develops a novel intelligent “model of dynamic decision-making" usingcell assemblies network architecture in robot's movement. The “model of dynamic decision-making" simulates human decision-making, and follows commands to make the correct decisions. The cell assemblies approach consisting of fLIF neurons was used to implement tasks for finding targets and avoiding obstacles. Experimental results show that the cell assemblies approach of can be employed to efficiently complete finding targets and avoiding obstacles tasks and can simulate the human thinking and the mode of information transactions.
Keywords: Cell assemblies, fLIF, Hebbian learning rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219584 Hopfield Network as Associative Memory with Multiple Reference Points
Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato
Abstract:
Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.
Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108583 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned
Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh
Abstract:
This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two Activity-Based Costing (ABC) models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.
Keywords: Activity-based costing, activity-based management, construction, architectural aluminum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16582 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial
Authors: K. Afsahi, M. Soheilifar, S. H. Hosseini, O. S. Esmaeili, R. Kezemi, N. Mehrbod, N. Vahed, T. Hajiahmad, N. N. Ansari
Abstract:
Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of virtual reality (VR) beside conventional rehabilitation versus conventional rehabilitation alone on the spasticity and motor function in stroke patients. Materials and methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were Modified Ashworth scale, Recovery Stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in combination group (P = 0.003). Only wrist extension was varied between groups and was better in combination group. The variables generally had statistically significant difference (P < 0.05). Conclusion: VR plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.
Keywords: Stroke, virtual therapy, efficacy, rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755581 Making Waves: Preparing the Next Generation of Bilingual Medical Doctors
Authors: Edith Esparza-Young, Ángel M. Matos, Yaritza Gonzalez, Kirthana Sugunathevan
Abstract:
Introduction: This research describes the existing medical school program which supports a multicultural setting and bilingualism. The rise of Spanish speakers in the United States has led to the recruitment of bilingual medical students who can serve the evolving demographics. This paper includes anecdotal evidence, narratives and the latest research on the outcomes of supporting a multilingual academic experience in medical school and beyond. People in the United States will continue to need health care from physicians who have experience with multicultural competence. Physicians who are bilingual and possess effective communication skills will be in high demand. Methodologies: This research is descriptive. Through this descriptive research, the researcher will describe the qualities and characteristics of the existing medical school programs, curriculum, and student services. Additionally, the researcher will shed light on the existing curriculum in the medical school and also describe specific programs which help to serve as safety nets to support diverse populations. The method included observations of the existing program and the implementation of the medical school program, specifically the Accelerated Review Program, the Language Education and Professional Communication Program, student organizations and the Global Health Institute. Concluding Statement: This research identified and described characteristics of the medical school’s program. The research explained and described the current and present phenomenon of this medical program, which has focused on increasing the graduation of bilingual and minority physicians. The findings are based on observations of the curriculum, programs and student organizations which evolves and remains innovative to stay current with student enrollment.
Keywords: Bilingual, English, medicine, doctor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905580 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.
Keywords: Factorization machines, feature engineering, negative ratings, recommendation systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942579 Fitness Action Recognition Based on MediaPipe
Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin
Abstract:
MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.
Keywords: Computer Vision, MediaPipe, Adaptive Boosting, Fast Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855578 A New History Based Method to Handle the Recurring Concept Shifts in Data Streams
Authors: Hossein Morshedlou, Ahmad Abdollahzade Barforoush
Abstract:
Recent developments in storage technology and networking architectures have made it possible for broad areas of applications to rely on data streams for quick response and accurate decision making. Data streams are generated from events of real world so existence of associations, which are among the occurrence of these events in real world, among concepts of data streams is logical. Extraction of these hidden associations can be useful for prediction of subsequent concepts in concept shifting data streams. In this paper we present a new method for learning association among concepts of data stream and prediction of what the next concept will be. Knowing the next concept, an informed update of data model will be possible. The results of conducted experiments show that the proposed method is proper for classification of concept shifting data streams.Keywords: Data Stream, Classification, Concept Shift, History.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278577 Balancing Neural Trees to Improve Classification Performance
Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti
Abstract:
In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226576 Pre-Service EFL Teachers' Perceptions of Written Corrective Feedback in a Wiki-Based Environment
Authors: Mabel Ortiz, Claudio Díaz
Abstract:
This paper explores Chilean pre-service teachers' perceptions about the provision of corrective feedback in a wiki environment during the collaborative writing of an argumentative essay. After conducting a semi-structured interview on 22 participants, the data were processed through the content analysis technique. The results show that students have positive perceptions about corrective feedback, provided through a wiki virtual environment, which in turn facilitates feedback provision and impacts language learning effectively. Some of the positive perceptions about virtual feedback refer to permanent access, efficiency, simultaneous revision and immediacy. It would then be advisable to integrate wiki-based feedback as a methodology for the language classroom and collaborative writing tasks.
Keywords: Argumentative essay, focused corrective feedback, perception, wiki environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986575 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676574 Internet of Health Things as a Win-Win Solution for Mitigating the Paradigm Shift inside Senior Patient-Physician Shared Health Management
Authors: Marilena Ianculescu, Adriana Alexandru
Abstract:
Internet of Health Things (IoHT) has already proved to be a persuasive means to support a proper assessment of the living conditions by collecting a huge variety of data. For a customized health management of a senior patient, IoHT provides the capacity to build a dynamic solution for sustaining the shift inside the patient-physician relationship by allowing a real-time and continuous remote monitoring of the health status, well-being, safety and activities of the senior, especially in a non-clinical environment. Thus, is created a win-win solution in which both the patient and the physician enhance their involvement and shared decision-making, with significant outcomes. Health monitoring systems in smart environments are becoming a viable alternative to traditional healthcare solutions. The ongoing “Non-invasive monitoring and health assessment of the elderly in a smart environment (RO-SmartAgeing)” project aims to demonstrate that the existence of complete and accurate information is critical for assessing the health condition of the seniors, improving wellbeing and quality of life in relation to health. The researches performed inside the project aim to highlight how the management of IoHT devices connected to the RO-SmartAgeing platform in a secure way by using a role-based access control system, can allow the physicians to provide health services at a high level of efficiency and accessibility, which were previously only available in hospitals. The project aims to identify deficient aspects in the provision of health services tailored to a senior patient’s specificity and to offer a more comprehensive perspective of proactive and preventive medical acts.Keywords: Health management, Internet of Health Things, remote monitoring, senior patient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637573 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.
Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764572 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India
Authors: N. K. Ambujam, V. Sudha
Abstract:
Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.
Keywords: Hyper-eutrophication, Krishnagiri reservoir, nutrients, NPS pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622571 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813570 An Intelligent Approach of Rough Set in Knowledge Discovery Databases
Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das
Abstract:
Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336569 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417568 Creating a Virtual Perception for Upper Limb Rehabilitation
Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee
Abstract:
This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.Keywords: Physical rehabilitation, mirror neuron, virtual reality, stroke therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950567 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765566 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262565 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules
Authors: Tamanna Siddiqui, M. Afshar Alam
Abstract:
Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485564 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks
Authors: Oguz Ustun, Erdal Bekiroglu
Abstract:
In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM
Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062563 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism
Authors: D. Sumathi, P. Poongodi
Abstract:
Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196562 The Association between Food Security Status and Depression in Two Iranian Ethnic Groups Living in Northwest of Iran
Authors: A. Rezazadeh, N. Omidvar, H. Eini-Zinab
Abstract:
Food insecurity (FI) influences may result in poor physical and mental health outcomes. Minor ethnic group may experience higher level of FI, and this situation may be related with higher depression prevalence. The aim of this study was to determine the association of depression with food security status in major (Azeri) and minor (Kurdish) ethnicity living in Urmia, West Azerbaijan, north of Iran. In this cross-sectional study, 723 participants (427 women and 296 men) aged 20–64 years old, from two ethnic groups (445 Azeri and 278 Kurdish), were selected through a multi stage cluster systematic sampling. Depression rate was assessed by “Beck” short form questionnaire (validated in Iranians) through interviews. Household FI status (HFIS) was measured using adapted HFI access scale through face-to-face interviews at homes. Multinomial logistic regression was used to estimate odds ratios (OR) of depression across HFIS. Higher percent of Kurds had moderate and severe depression in comparison with Azeri group (73 [17.3%] vs. 86 [27.9%]). There were not any significant differences between the two ethnicities in mild depression. Also, of all the subjects, moderate-to-sever FI was more prevalent in Kurds (28.5%), compared to Azeri group (17.3%) [P < 0.01]. Kurdish ethnic group living in food security or mild FI households had lower chance to have symptom of severe depression in comparison to those with sever FI (OR=0.097; 95% CI: 0.02-0.47). However, there was no significant association between depression and HFI in Azeri group. Findings revealed that the severity of HFI was related with severity depression in minor studied ethnic groups. However, in Azeri ethnicity as a major group, other confounders may have influence on the relation with depression and FI, that were not studied in the present study.Keywords: Depression, ethnicity, food security status, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999561 Teaching Light Polarization by Putting Art and Physics Together
Authors: Fabrizio Logiurato
Abstract:
Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.
Keywords: Light polarization, optical activity, multidisciplinary education, science and art.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095560 Parallel Text Processing: Alignment of Indonesian to Javanese Language
Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy
Abstract:
Parallel text alignment is proposed as a way of aligning bahasa Indonesia to words in Javanese. Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).
Keywords: Parallel text alignment, phrase pair combination, edit distance coefficient, Javanese-Indonesian language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482559 Reciprocal Interferences in Bilingual English-Igbo Speaking Society: The Implications in Language Pedagogy
Authors: Ugwu Elias Ikechukwu
Abstract:
Discussions on bilingualism have always dwelt on how the mother tongue interferes with the target language. This interference is considered a serious problem in second language learning. Usually, the interference has been phonological. But the objective of this research is to explore how the target language interferes with the mother tongue. In the case of the Igbo language, it interferes with English mostly at the phonological level while English interferes with Igbo at the realm of vocabulary. The result is a new language \"Engligbo\" which is a hybrid of English and Igbo. The Igbo language spoken by about 25 million people is one of the three most prominent languages in Nigeria. This paper discusses the phenomenal Engligbo, and other implications for Igbo learners of English. The method of analysis is descriptive. A number of recommendations were made that would help teachers handle problems arising from such mutual interferences.
Keywords: Bilingualism, Implications, Language Pedagogy, Reciprocal Interferences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5662558 Appraisal of Trace Elements in Scalp Hair of School Children in Kandal Province, Cambodia
Authors: A. Yavar, S. Sarmani, K. S. Khoo
Abstract:
The analysis of trace elements in human hair provides crucial insights into an individual's nutritional status and environmental exposure. This research aimed to examine the levels of toxic and essential elements in the scalp hair of school children aged 12-17 from three villages (Anglong Romiot (AR), Svay Romiot (SR), and Kampong Kong (KK)) in Cambodia's Kandal province, a region where residents are especially vulnerable to toxic elements, notably arsenic (As), due to their dietary habits, lifestyle, and environmental conditions. The scalp hair samples were analyzed using the k0-Instrumental Neutron Activation method (k0-INAA), with a six-hour irradiation period in the Malaysian Nuclear Agency (MNA) research reactor followed by High Purity Germanium (HPGe) detector use to identify the gamma peaks of radionuclides. The analysis identified 31 elements in the human hair from the study area, including As, Au, Br, Ca, Ce, Co, Dy, Eu-152m, Hg-197, Hg-203, Ho, Ir, K, La, Lu, Mn, Na, Pa, Pt-195m, Pt-197, Sb, Sc-46, Sc-47, Sm, Sn-117m, W-181, W-187, Yb-169, Yb-175, Zn, and Zn-69m. The accuracy of the method was verified through the analysis of ERM-DB001-human hair as a Certified Reference Material (CRM), with the results demonstrating consistency with the certified values. Given the prevalent arsenic pollution in the research area, the study also examined the relationship between the concentration of As and other elements using Pearson's correlation test. The outcomes offer a comprehensive resource for future investigations into toxic and essential element presence in the region. In the main body of the paper, a more extensive discussion on the implications of arsenic pollution and the correlations observed is provided to enhance understanding and inform future research directions.
Keywords: Human scalp hair, toxic and essential elements, Kandal Province, Cambodia, k0-Instrumental Neutron Activation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263557 Psychometric Examination of the QUEST-25: An Online Assessment of Intellectual Curiosity and Scientific Epistemology
Authors: Matthew J. Zagumny
Abstract:
The current study reports an examination of the QUEST-25 (Q-Assessment of Undergraduate Epistemology and Scientific Thinking) online version for assessing the dispositional attitudes toward scientific thinking and intellectual curiosity among undergraduate students. The QUEST-25 consists of scientific thinking (SIQ-25) and intellectual curiosity (ICIQ-25), which were correlated in hypothesized directions with the Religious Commitment Inventory, Curiosity and Exploration Inventory, Belief in Science scale, and measures of academic self-efficacy. Additionally, concurrent validity was established by the resulting significant differences between those identifying the centrality of religious belief in their lives and those who do not self-identify as being guided daily by religious beliefs. This study demonstrates the utility of the QUEST-25 for research, evaluation, and theory development.
Keywords: Guided-inquiry learning, intellectual curiosity, psychometric assessment, scientific thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758556 Application of Tacit Knowledge from Professional Packaging Designer for Teaching Packaging Design
Authors: Somsri Binraman, Boonliang Kaewnapan, Krittika Tanprasert
Abstract:
In the package design industry, there are a lot of tacit knowledge resided within each designer. The objectives are to capture them and compile it to be used as a teaching resource and to create a video clip of package design process as well as to evaluate its quality and learning effectiveness. Interview were used as a technique for capturing knowledge in brand design concept, differentiation, recognition, rank of recognition factor, consumer survey, knowledge about marketing, research, graphic design, the effect of color, and law and regulation. Video clip about package design were created. The clip consisted of both the speech and clip of actual process. The quality of the video in term of media was ranked as good while the content was ranked as excellent. The students- score on post-test was significantly greater than that of pretest (p>0.001).
Keywords: Tacit knowledge, interview, video, packaging, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484