Search results for: deep convolution network
1291 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751290 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Geryes Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g. Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple-views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.
Keywords: Smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551289 An Automated Test Setup for the Characterization of Antenna in CATR
Authors: Faisal Amin, Abdul Mueed, Xu Jiadong
Abstract:
This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691288 Strategies to Achieve Deep Decarbonization in Power Generation: A Review
Authors: Abdullah Alotaiq
Abstract:
The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.
Keywords: Review, power generation, energy transition, decarbonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731287 Tariff as a Determining Factor in Choosing Mobile Operators: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
In recent years, the adoption of mobile phones has been exceptionally rapid in many parts of the world, and Tanzania is not exceptional. We are witnessing a number of new mobile network operators being licensed from time to time by Tanzania Communications Regulatory Authority (TCRA). This makes competition in the telecommunications market very stiff. All mobile phone companies are struggling to earn more new customers into their networks. This trend courses a stiff competition. The various measures are being taken by different companies including, lowering tariff, and introducing free short messages within and out of their networks, and free calls during off-peak periods. This paper is aimed at investigating the influence of tariffs on students’ mobile customers in selecting their mobile network operators. About seventy seven students from high learning institutions in Dodoma Municipality, Tanzania, participated in responding to the prepared questionnaires. The sought information was aimed at determining if tariffs influenced students into selection of their current mobile operators. The results indicate that tariffs were the major driving factor in selection of mobile operators. However, female mobile customers were found to be more easily attracted into subscribing to a mobile operator due to low tariffs, a bigger number of free short messages or discounted call charges than their fellow male customers.
Keywords: Consumer Buying, mobile operators, tariff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22381286 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22141285 A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal
Authors: Wann-Ming Wey
Abstract:
The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.
Keywords: Analytic Network Process, Built Environment, Quality Function Deployment, Urban Design, Urban Renewal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871284 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5361283 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19151282 Evaluation of Handover Latency in Intra- Domain Mobility
Authors: Aisha Hassan Abdalla Hashim, Fauzana Ridzuan, Nazreen Rusli
Abstract:
Mobile IPv6 (MIPv6) describes how mobile node can change its point of attachment from one access router to another. As a demand for wireless mobile devices increases, many enhancements for macro-mobility (inter-domain) protocols have been proposed, designed and implemented in Mobile IPv6. Hierarchical Mobile IPv6 (HMIPv6) is one of them that is designed to reduce the amount of signaling required and to improve handover speed for mobile connections. This is achieved by introducing a new network entity called Mobility Anchor Point (MAP). This report presents a comparative study of the Hierarchical Mobility IPv6 and Mobile IPv6 protocols and we have narrowed down the scope to micro-mobility (intra-domain). The architecture and operation of each protocol is studied and they are evaluated based on the Quality of Service (QoS) parameter; handover latency. The simulation was carried out by using the Network Simulator-2. The outcome from this simulation has been discussed. From the results, it shows that, HMIPv6 performs best under intra-domain mobility compared to MIPv6. The MIPv6 suffers large handover latency. As enhancement we proposed to HMIPv6 to locate the MAP to be in the middle of the domain with respect to all Access Routers. That gives approximately same distance between MAP and Mobile Node (MN) regardless of the new location of MN, and possible shorter distance. This will reduce the delay since the distance is shorter. As a future work performance analysis is to be carried for the proposed HMIPv6 and compared to HMIPv6.
Keywords: Intra-domain mobility, HMIPv6, Handover Latency, proposed HMIPv6.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14021281 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph
Authors: Sumit Kumar, Sunil Kumar, Chandan Deep Singh
Abstract:
This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software.Keywords: Bond graph modeling, dynamics. modeling, Rayleigh beam, underwater robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30121280 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25901279 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631278 SMEs Relationship Banking: Length, Loyalty, Trust. Do SMEs get Something in Return?
Authors: Daniel Badulescu
Abstract:
Under the difficult access to finance of SMEs, they expect that its relationship with the banks shall constitute a real help to access appropriate financing, at reasonable costs and requirements, given the possibility of mutually beneficial and long lasting relation. The literature, but also the research we have carried on, is centered on such determinants as concentration and the length of the relationship, but at the same time, there is little certainty that banks are responding positively to them. Furthermore, although the trust is considered as being a fundamental element of bank relationship – see the case house bank – SMEs find that the banks finance them looking rather on collaterals and covenants than to trust. Moreover, a positive behavior, such as prompt or advance repayments of loans, doesn-t generate any positive feedback from the banks side. All these show a deep un-satisfaction of the SMEs concerning their relationship banking.
Keywords: Banks' behavior, relationship banking, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21791277 Kinetics of Hydrodesulphurization of Diesel: Mass Transfer Aspects
Authors: Sudip K. Ganguly
Abstract:
In order to meet environmental norms, Indian fuel policy aims at producing ultra low sulphur diesel (ULSD) in near future. A catalyst for meeting such requirements has been developed and kinetics of this catalytic process is being looked into. In the present investigations, effect of mass transfer on kinetics of ultra deep hydrodesulphurization (UDHDS) to produce ULSD has been studied to determine intrinsic kinetics over a pre-sulphided catalyst. Experiments have been carried out in a continuous flow micro reactor operated in the temperature range of 330 to 3600C, whsv of 1 hr-1 at a pressure of 35 bar, and its parameters estimated. Based on the derived rate expression and estimated parameters optimum operation range has been determined for this UDHDS catalyst to obtain ULSD product.Keywords: Diesel, hydrodesulphurization, kinetics, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17991276 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391275 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Authors: Indiramma M., K. R. Anandakumar
Abstract:
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921274 Collection of Untraditionally Developed Academic IT Services in Eastern Europe
Authors: Rihards Balodis, Inara Opmane
Abstract:
Deep and radical social reforms of the last century-s nineties in many Eastern European countries caused changes in Information Technology-s (IT) field. Inefficient information technologies were rapidly replaced with forefront IT solutions, e.g., in Eastern European countries there is a high level penetration of qualitative high-speed Internet. The authors have taken part in the introduction of those changes in Latvia-s leading IT research institute. Grounding on their experience authors in this paper offer an IT services based model for analysis the mentioned changes- and development processes in the higher education and research fields, i.e., for research e-infrastructure-s development. Compare to the international practice such services were developed in Eastern Europe in an untraditional way, which provided swift and positive technological changes.Keywords: Computing, data networking, e-infrastructure, IT services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041273 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid
Authors: Hemant I. Joshi, Vivek J. Pandya
Abstract:
This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.
Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841272 A Vehicular Visual Tracking System Incorporating Global Positioning System
Authors: Hsien-Chou Liao, Yu-Shiang Wang
Abstract:
Surveillance system is widely used in the traffic monitoring. The deployment of cameras is moving toward a ubiquitous camera (UbiCam) environment. In our previous study, a novel service, called GPS-VT, was firstly proposed by incorporating global positioning system (GPS) and visual tracking techniques for the UbiCam environment. The first prototype is called GODTA (GPS-based Moving Object Detection and Tracking Approach). For a moving person carried GPS-enabled mobile device, he can be tracking when he enters the field-of-view (FOV) of a camera according to his real-time GPS coordinate. In this paper, GPS-VT service is applied to the tracking of vehicles. The moving speed of a vehicle is much faster than a person. It means that the time passing through the FOV is much shorter than that of a person. Besides, the update interval of GPS coordinate is once per second, it is asynchronous with the frame rate of the real-time image. The above asynchronous is worsen by the network transmission delay. These factors are the main challenging to fulfill GPS-VT service on a vehicle.In order to overcome the influence of the above factors, a back-propagation neural network (BPNN) is used to predict the possible lane before the vehicle enters the FOV of a camera. Then, a template matching technique is used for the visual tracking of a target vehicle. The experimental result shows that the target vehicle can be located and tracking successfully. The success location rate of the implemented prototype is higher than that of the previous GODTA.Keywords: visual surveillance, visual tracking, globalpositioning system, intelligent transportation system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19161271 Analytical Modeling of Channel Noise for Gate Material Engineered Surrounded/Cylindrical Gate (SGT/CGT) MOSFET
Authors: Pujarini Ghosh A, Rishu Chaujar B, Subhasis Haldar C, R.S Gupta D, Mridula Gupta E
Abstract:
In this paper, an analytical modeling is presentated to describe the channel noise in GME SGT/CGT MOSFET, based on explicit functions of MOSFETs geometry and biasing conditions for all channel length down to deep submicron and is verified with the experimental data. Results shows the impact of various parameters such as gate bias, drain bias, channel length ,device diameter and gate material work function difference on drain current noise spectral density of the device reflecting its applicability for circuit design applications.Keywords: Cylindrical/Surrounded gate (SGT/CGT) MOSFET, Gate Material Engineering (GME), Spectral Noise and short channeleffect (SCE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19791270 Qualification and Provisioning of xDSL Broadband Lines using a GIS Approach
Authors: Mavroidis Athanasios, Karamitsos Ioannis, Saletti Paola
Abstract:
In this paper is presented a Geographic Information System (GIS) approach in order to qualify and monitor the broadband lines in efficient way. The methodology used for interpolation is the Delaunay Triangular Irregular Network (TIN). This method is applied for a case study in ISP Greece monitoring 120,000 broadband lines.
Keywords: GIS loop qualification, GIS xDSL, LLU TIN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641269 Conflict, Confusion, Choice: A Phenomenological Approach to Acts of Corruption
Authors: Yvonne T. Haigh
Abstract:
Public sector corruption has long-term and damaging effects that are deep and broad. Addressing corruption relies on understanding the drivers that precipitate acts of corruption and developing educational programs that target areas of vulnerability. This paper provides an innovative approach to explore the nature of corruption by drawing on the perceptions and ideas of a group of public servants who have been part of a corruption investigation. The paper examines these reflections through the ideas of Pierre Bourdieu and Alfred Schutz to point to some of the steps that can lead to corrupt activity. The paper demonstrates that phenomenological inquiry is useful in the exploration of corruption and, as a theoretical framework, it highlights that corruption emerges through a combination of conflict, doubt and uncertainty. The paper calls for anti-corruption education programs to be attentive to way in which these conditions can influence the steps into corruption.Keywords: Phenomenology, choice, conflict, corruption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21391268 Wireless Sensor Networks for Swiftlet Farms Monitoring
Authors: Al-Khalid Othman, Wan A. Wan Zainal Abidin, Kee M. Lee, Hushairi Zen, Tengku. M. A. Zulcaffle, Kuryati Kipli
Abstract:
This paper provides an in-depth study of Wireless Sensor Network (WSN) application to monitor and control the swiftlet habitat. A set of system design is designed and developed that includes the hardware design of the nodes, Graphical User Interface (GUI) software, sensor network, and interconnectivity for remote data access and management. System architecture is proposed to address the requirements for habitat monitoring. Such applicationdriven design provides and identify important areas of further work in data sampling, communications and networking. For this monitoring system, a sensor node (MTS400), IRIS and Micaz radio transceivers, and a USB interfaced gateway base station of Crossbow (Xbow) Technology WSN are employed. The GUI of this monitoring system is written using a Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) along with Xbow Technology drivers provided by National Instrument. As a result, this monitoring system is capable of collecting data and presents it in both tables and waveform charts for further analysis. This system is also able to send notification message by email provided Internet connectivity is available whenever changes on habitat at remote sites (swiftlet farms) occur. Other functions that have been implemented in this system are the database system for record and management purposes; remote access through the internet using LogMeIn software. Finally, this research draws a conclusion that a WSN for monitoring swiftlet habitat can be effectively used to monitor and manage swiftlet farming industry in Sarawak.Keywords: Swiftlet, WSN, Habitat Monitoring, Networking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27551267 Algorithmic Skills Transferred from Secondary CSI Studies into Tertiary Education
Authors: Piroska Biró, Mária Csernoch, János Máth, Kálmán Abari
Abstract:
Testing the first year students of Informatics at the University of Debrecen revealed that students start their tertiary studies in programming with a low level of programming knowledge and algorithmic skills. The possible reasons which lead the students to this very unfortunate result were examined. The results of the test were compared to the students’ results in the school leaving exams and to their self-assessment values. It was found that there is only a slight connection between the students’ results in the test and in the school leaving exams, especially at intermediate level. Beyond this, the school leaving exams do not seem to enable students to evaluate their own abilities.
Keywords: Deep and surface approaches, metacognitive abilities, programming and algorithmic skills, school leaving exams, tracking code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631266 Optimization and GIS-Based Intelligent Decision Support System for Urban Transportation Systems Analysis
Authors: Mohamad K. Hasan, Hameed Al-Qaheri
Abstract:
Optimization plays an important role in most real world applications that support decision makers to take the right decision regarding the strategic directions and operations of the system they manage. Solutions for traffic management and traffic congestion problems are considered major problems that most decision making authorities for cities around the world are looking for. This review paper gives a full description of the traffic problem as part of the transportation planning process and present a view as a framework of urban transportation system analysis where the core of the system is a transportation network equilibrium model that is based on optimization techniques and that can also be used for evaluating an alternative solution or a combination of alternative solutions for the traffic congestion. Different transportation network equilibrium models are reviewed from the sequential approach to the multiclass combining trip generation, trip distribution, modal split, trip assignment and departure time model. A GIS-Based intelligent decision support system framework for urban transportation system analysis is suggested for implementation where the selection of optimized alternative solutions, single or packages, will be based on an intelligent agent rather than human being which would lead to reduction in time, cost and the elimination of the difficulty, by human being, for finding the best solution to the traffic congestion problem.Keywords: Multiclass simultaneous transportation equilibrium models, transportation planning, urban transportation systems analysis, intelligent decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22981265 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous
Authors: Insung Jung, Gi-Nam Wang
Abstract:
In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18361264 Reconstitute Information about Discontinued Water Quality Variables in the Nile Delta Monitoring Network Using Two Record Extension Techniques
Authors: Bahaa Khalil, Taha B. M. J. Ouarda, André St-Hilaire
Abstract:
The world economic crises and budget constraints have caused authorities, especially those in developing countries, to rationalize water quality monitoring activities. Rationalization consists of reducing the number of monitoring sites, the number of samples, and/or the number of water quality variables measured. The reduction in water quality variables is usually based on correlation. If two variables exhibit high correlation, it is an indication that some of the information produced may be redundant. Consequently, one variable can be discontinued, and the other continues to be measured. Later, the ordinary least squares (OLS) regression technique is employed to reconstitute information about discontinued variable by using the continuously measured one as an explanatory variable. In this paper, two record extension techniques are employed to reconstitute information about discontinued water quality variables, the OLS and the Line of Organic Correlation (LOC). An empirical experiment is conducted using water quality records from the Nile Delta water quality monitoring network in Egypt. The record extension techniques are compared for their ability to predict different statistical parameters of the discontinued variables. Results show that the OLS is better at estimating individual water quality records. However, results indicate an underestimation of the variance in the extended records. The LOC technique is superior in preserving characteristics of the entire distribution and avoids underestimation of the variance. It is concluded from this study that the OLS can be used for the substitution of missing values, while LOC is preferable for inferring statements about the probability distribution.Keywords: Record extension, record augmentation, monitoringnetworks, water quality indicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16111263 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well
Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo
Abstract:
A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.Keywords: Neural networks, groundwater depth, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25141262 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3298