Search results for: Heat transfer
118 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells
Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe
Abstract:
Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.Keywords: CNT incorporation, ITO electrode, spin coating, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826117 Structural Characteristics of HPDSP Concrete on Beam Column Joints
Authors: Sushil Kumar Swar, Sanjay Kumar Sharma, Hari Krishan Sharma, Sushil Kumar
Abstract:
The seriously damaged structures during earthquakes show the need and importance of design of reinforced concrete structures with high ductility. Reinforced concrete beam-column joints have an important function in all structures. Under seismic excitation, the beam column joint region is subjected to horizontal and vertical shear forces whose magnitude is many times higher than the adjacent beam and column. Strength and ductility of structures depends mainly on proper detailing of the reinforcement in beamcolumn joints and the old structures were found ductility deficient. DSP materials are obtained by using high quantities of super plasticizers and high volumes of micro silica. In the case of High Performance Densified Small Particle Concrete (HPDSPC), since concrete is dense even at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. This in turn will improve cracking behaviour, ductility and energy absorption capacity of composites in addition to durability. The fine fibers used in our mix are 0.3mm diameter and 10 mm which can be easily placed with high percentage. These fibers easily transfer stresses and act as a composite concrete unit to take up extremely high loads with high compressive strength. HPDSPC placed in the beam column joints helps in safety of human life due to prolonged failure.Keywords: High Performance Densified Small Particle Concrete (HPDSPC), Steel Fıber Reinforced Concrete (SFRC), Slurry Infiltrated Concrete (SIFCON), Slurry Infiltrated Mat Concrete (SIMCON).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166116 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages
Authors: Hock Chuan, Lim
Abstract:
This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.
Keywords: Blended learning, network science, social learning, social network analysis, study environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660115 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels
Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery
Abstract:
The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.
Keywords: Interstitial free, miniaturized tensile specimen, plastic anisotropy, rapid alloy prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146114 Improvement of Ventilation and Thermal Comfort Using the Atrium Design for Traditional Folk Houses-Fujian Earthen Building
Authors: Ying-Ming Su
Abstract:
Fujian earthen building which was known as a classic for ecological buildings was listed on the world heritage in 2008 (UNESCO) in China. Its design strategy can be applied to modern architecture planning and design. This study chose two different cases (Round Atrium: Er-Yi Building, Double Round Atrium: Zhen-Chen Building) of earthen building in Fu-Jian to compare the ventilation effects of different atrium forms. We adopt field measurements and computational fluid dynamics (CFD) simulation of temperature, humidity, and wind environment to identify the relationship between external environment and atrium about comfort and to confirm the relationship about atrium H/W (height/width). Results indicate that, through the atrium convection effect, it makes the natural wind guides to each space surrounded and keeps indoor comfort. It illustrates that the smaller the ratio of the H/W which is the relationship between the height and the width of an atrium is, the greater the wind speed generated within the street valley. Moreover, the wind speed is very close to the reference wind speed. This field measurement verifies that the value of H/W has great influence of solar radiation heat and sunshine shadows. The ventilation efficiency is: Er-Yi Building (H/W =0.2778) > Zhen-Chen Building (H/W=0.3670). Comparing the cases with the same shape but with different H/W, through the different size patios, airflow revolves in the atriums and can be brought into each interior space. The atrium settings meet the need of building ventilation, and can adjust the humidity and temperature within the buildings. It also creates good ventilation effect.
Keywords: Traditional folk houses, Atrium, Earthen building, Ventilation, Building microclimate, PET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433113 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall
Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi
Abstract:
Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.
Keywords: Steel plate shear wall, Abacus software, finite element method, boundary element, seismic structural improvement, Von misses Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520112 Effect of Cold, Warm or Contrast Therapy on Controlling Knee Osteoarthritis Associated Problems
Authors: Amal E. Shehata, Manal E. Fareed
Abstract:
Osteoarthritis (OA) is the most prevalent and far common debilitating form of arthritis which can be defined as a degenerative condition affecting synovial joint. Patients suffering from osteoarthritis often complain of dull ache pain on movement. Physical agents can fight the painful process when correctly indicated and used such as heat or cold therapy Aim. This study was carried out to: Compare the effect of cold, warm and contrast therapy on controlling knee osteoarthritis associated problems. Setting: The study was carried out in orthopedic outpatient clinics of Menoufia University and teaching Hospitals, Egypt. Sample: A convenient sample of 60 adult patients with unilateral knee osteoarthritis. Tools: three tools were utilized to collect the data. Tool I : An interviewing questionnaire. It comprised of three parts covering sociodemographic data, medical data and adverse effects of the treatment protocol. Tool II : Knee Injury and Osteoarthritis Outcome Score (KOOS) It consists of five main parts. Tool II1 : 0-10 Numeric pain rating scale. Results: reveled that the total knee symptoms score was decreased from moderate symptoms pre intervention to mild symptoms after warm and contrast method of therapy, but the contrast therapy had significant effect in reducing the knee symptoms and pain than the other symptoms. Conclusions: all of the three methods of therapy resulted in improvement in all knee symptoms and pain but the most appropriate protocol of treatment to relive symptoms and pain was contrast therapy.
Keywords: Knee Osteoarthritis, Cold, Warm and Contrast Therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5737111 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings
Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo
Abstract:
The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.
Keywords: Building structure, seismic waves, spectral analysis, structural response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5297110 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.
Keywords: Electrowinning, intercell bars, PV energy, current modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623109 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems
Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki
Abstract:
This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.
Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097108 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets
Authors: S. D. El Wakil
Abstract:
The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.
Keywords: Fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163107 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant
Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea
Abstract:
In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.Keywords: Flow, aeration, bioreactor, oxygen concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459106 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.
Keywords: Automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59105 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis
Authors: Kuvshinov, D., Siswanto, A., Zimmerman, W. B.
Abstract:
A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil might also be used as a foodstuff due to its significant nutrition content. The limitations for utilizing the oil as a foodstuff are mainly due to a toxicity of PE. Currently, a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence.
Ozone is considered as a strong oxidative agent. It reacts with PE by attacking the carbon-carbon double bond of PE. This modification of PE molecular structure yields a non toxic ester with high lipid content.
This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is an application for a new microscale plasma unit to ozone production and the technology permits ozone injection to the water-TPA mixture in form of microbubbles.
The efficacy of a heterogeneous process depends on the diffusion coefficient which can be controlled by contact time and interfacial area. The low velocity of rising microbubbles and high surface to volume ratio allow efficient mass transfer to be achieved during the process. Direct injection of ozone is the most efficient way to process with such highly reactive and short lived chemical.
Data on the plasma unit behavior are presented and the influence of gas oscillation technology on the microbubble production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.
Keywords: Microbubble, ozonolysis, synthetic phorbol ester.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376104 Strategy in Controlling Rice-Field Conversion in Pangkep Regency, South Sulawesi, Indonesia
Authors: Nurliani, Ida Rosada
Abstract:
The national rice consumption keeps increasing along with raising income of the households and the rapid growth of population. However, food availability, particularly rice, is limited. Impacts of rice-field conversion have run cumulatively, as we can see on potential losses of rice and crops production, as well as work opportunity that keeps increasing year-by-year. Therefore, it requires policy recommendation to control rice-field conversion through economic, social, and ecological approaches. The research was a survey method intended to: (1) Identify internal factors; quality and productivity of the land as the cause of land conversion, (2) Identify external factors of land conversion, value of the rice-field and the competitor’s land, workforce absorption, and regulation, as well as (3) Formulate strategies in controlling rice-field conversion. Population of the research was farmers who applied land conversion at Pangkep Regency, South Sulawesi. Samples were determined using the incidental sampling method. Data analysis used productivity analysis, land quality analysis, total economic value analysis, and SWOT analysis. Results of the research showed that the quality of rice-field was low as well as productivity of the grains (unhulled-rice). So that, average productivity of the grains and quality of rice-field were low as well. Total economic value of rice-field was lower than the economic value of the embankment. Workforce absorption value on rice-field was higher than on the embankment. Strategies in controlling such rice-field conversion can be done by increasing rice-field productivity, improving land quality, applying cultivation technique of specific location, improving the irrigation lines, and socializing regulation and sanction about the transfer of land use.
Keywords: Land conversion, quality of rice-field, land economic value, strategy in controlling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315103 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.
Keywords: Natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049102 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance
Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic
Abstract:
A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.
Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099101 Effect of High Injection Pressure on Mixture Formation, Burning Process and Combustion Characteristics in Diesel Combustion
Authors: Amir Khalid, B. Manshoor
Abstract:
The mixture formation prior to the ignition process plays as a key element in the diesel combustion. Parametric studies of mixture formation and ignition process in various injection parameter has received considerable attention in potential for reducing emissions. Purpose of this study is to clarify the effects of injection pressure on mixture formation and ignition especially during ignition delay period, which have to be significantly influences throughout the combustion process and exhaust emissions. This study investigated the effects of injection pressure on diesel combustion fundamentally using rapid compression machine. The detail behavior of mixture formation during ignition delay period was investigated using the schlieren photography system with a high speed camera. This method can capture spray evaporation, spray interference, mixture formation and flame development clearly with real images. Ignition process and flame development were investigated by direct photography method using a light sensitive high-speed color digital video camera. The injection pressure and air motion are important variable that strongly affect to the fuel evaporation, endothermic and prolysis process during ignition delay. An increased injection pressure makes spray tip penetration longer and promotes a greater amount of fuel-air mixing occurs during ignition delay. A greater quantity of fuel prepared during ignition delay period thus predominantly promotes more rapid heat release.Keywords: Mixture Formation, Diesel Combustion, Ignition Process, Spray, Rapid Compression Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843100 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.
Keywords: Electrical conductivity, electrophoretic deposition, p-type Bi2Te3, thermoelectric materials, thick films.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100899 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach
Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.Keywords: Air-conditioned coaches, fire propagation, flame contour, soot flow, train fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129698 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction
Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal
Abstract:
The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.Keywords: Acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97697 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites
Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar
Abstract:
Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.Keywords: Multi-functional, polymer composites, radiation shielding, sandwich composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181796 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review
Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi
Abstract:
Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.
Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139795 Replacement of Commercial Anti-Corrosion Material with a More Effective and Cost Efficient Compound Based on Electrolytic System Simulation
Authors: Saeid Khajehmandali, Fattah Mollakarimi, Zohreh Seyf
Abstract:
There was a high rate of corrosion in Pyrolysis Gasoline Hydrogenation (PGH) unit of Arak Petrochemical Company (ARPC), and it caused some operational problem in this plant. A commercial chemical had been used as anti-corrosion in the depentanizer column overhead in order to control the corrosion rate. Injection of commercial corrosion inhibitor caused some operational problems such as fouling in some heat exchangers. It was proposed to replace this commercial material with another more effective trouble free, and well-known additive by R&D and operation specialists. At first, the system was simulated by commercial simulation software in electrolytic system to specify low pH points inside the plant. After a very comprehensive study of the situation and technical investigations ,ammonia / monoethanol amine solution was proposed as neutralizer or corrosion inhibitor to be injected in a suitable point of the plant. For this purpose, the depentanizer column and its accessories system was simulated again in case of this solution injection. According to the simulation results, injection of new anticorrosion substance has no any side effect on C5 cut product and operating conditions of the column. The corrosion rate will be cotrolled, if the pH remains at the range of 6.5 to 8 . Aactual plant test run was also carried out by injection of ammonia / monoethanol amine solution at the rate of 0.6 Kg/hr and the results of iron content of water samples and corrosion test coupons confirmed the simulation results. Now, ammonia / monoethanol amine solution is injected to a suitable pint inside the plant and corrosion rate has decreased significantly.Keywords: Corrosion, Pyrolysis Gasoline, Simulation, Corrosion test copoun.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236994 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94093 The Solar Wall in the Italian Climates
Authors: F. Stazi, C. Di Perna, C. Filiaci, A. Stazi
Abstract:
Passive systems were born with the purpose of the greatest exploitation of solar energy in cold climates and high altitudes. They spread themselves until the 80-s all over the world without any attention to the specific climate and the summer behavior; this caused the deactivation of the systems due to a series of problems connected to the summer overheating, the complex management and the rising of the dust. Until today the European regulation limits only the winter consumptions without any attention to the summer behavior but, the recent European EN 15251 underlines the relevance of the indoor comfort, and the necessity of the analytic studies validation by monitoring case studies. In the porpose paper we demonstrate that the solar wall is an efficient system both from thermal comfort and energy saving point of view and it is the most suitable for our temperate climates because it can be used as a passive cooling sistem too. In particular the paper present an experimental and numerical analisys carried out on a case study with nine different solar passive systems in Ancona, Italy. We carried out a detailed study of the lodging provided by the solar wall by the monitoring and the evaluation of the indoor conditions. Analyzing the monitored data, on the base of recognized models of comfort (ISO, ASHRAE, Givoni-s BBCC), is emerged that the solar wall has an optimal behavior in the middle seasons. In winter phase this passive system gives more advantages in terms of energy consumptions than the other systems, because it gives greater heat gain and therefore smaller consumptions. In summer, when outside air temperature return in the mean seasonal value, the indoor comfort is optimal thanks to an efficient transversal ventilation activated from the same wall.Keywords: Building envelope, energy saving, passive solarwall, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165492 Apparent Temperature Distribution on Scaffoldings during Construction Works
Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa
Abstract:
People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries
Keywords: Apparent temperature, health, safety work, scaffoldings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93091 Creating the Color Panoramic View using Medley of Grayscale and Color Partial Images
Authors: Dr. H. B. Kekre, Sudeep D. Thepade
Abstract:
Panoramic view generation has always offered novel and distinct challenges in the field of image processing. Panoramic view generation is nothing but construction of bigger view mosaic image from set of partial images of the desired view. The paper presents a solution to one of the problems of image seascape formation where some of the partial images are color and others are grayscale. The simplest solution could be to convert all image parts into grayscale images and fusing them to get grayscale image panorama. But in the multihued world, obtaining the colored seascape will always be preferred. This could be achieved by picking colors from the color parts and squirting them in grayscale parts of the seascape. So firstly the grayscale image parts should be colored with help of color image parts and then these parts should be fused to construct the seascape image. The problem of coloring grayscale images has no exact solution. In the proposed technique of panoramic view generation, the job of transferring color traits from reference color image to grayscale image is done by palette based method. In this technique, the color palette is prepared using pixel windows of some degrees taken from color image parts. Then the grayscale image part is divided into pixel windows with same degrees. For every window of grayscale image part the palette is searched and equivalent color values are found, which could be used to color grayscale window. For palette preparation we have used RGB color space and Kekre-s LUV color space. Kekre-s LUV color space gives better quality of coloring. The searching time through color palette is improved over the exhaustive search using Kekre-s fast search technique. After coloring the grayscale image pieces the next job is fusion of all these pieces to obtain panoramic view. For similarity estimation between partial images correlation coefficient is used.Keywords: Panoramic View, Similarity Estimate, Color Transfer, Color Palette, Kekre's Fast Search, Kekre's LUV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175490 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98989 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads
Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang
Abstract:
Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.
Keywords: Anti-dip slopes, crest loads, stability analysis, toppling failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906