Search results for: Wireless sensor network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3536

Search results for: Wireless sensor network

1766 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMAL2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1765 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: Exciton, Refractive index change, Extinction ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1764 Intelligent Network-Based Stepping Stone Detection Approach

Authors: Mohd Nizam Omar, Rahmat Budiarto

Abstract:

This research intends to introduce a new usage of Artificial Intelligent (AI) approaches in Stepping Stone Detection (SSD) fields of research. By using Self-Organizing Map (SOM) approaches as the engine, through the experiment, it is shown that SOM has the capability to detect the number of connection chains that involved in a stepping stones. Realizing that by counting the number of connection chain is one of the important steps of stepping stone detection and it become the research focus currently, this research has chosen SOM as the AI techniques because of its capabilities. Through the experiment, it is shown that SOM can detect the number of involved connection chains in Network-based Stepping Stone Detection (NSSD).

Keywords: Artificial Intelligent, Self-Organizing Map (SOM), Stepping Stone Detection, Tracing Intruder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1763 Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier

Authors: Dewi Nasien, Siti S. Yuhaniz, Habibollah Haron

Abstract:

In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.

Keywords: Handwriting Recognition, Freeman Chain Code andFeedforward Backpropagation Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1762 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
1761 Particle Swarm Optimization for Design of Water Distribution Systems

Authors: A. Vasan

Abstract:

Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.

Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1760 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine

Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum

Abstract:

In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.

This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.

Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1759 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
1758 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: Artificial neural network, back-propagation, tide data, training algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1757 Using Simulation for Prediction of Units Movements in Case of Communication Failure

Authors: J. Hodicky, P. Frantis

Abstract:

Command and Control (C2) system and its interfacethe Common Operational Picture (COP) are main means that supports commander in its decision making process. COP contains information about friendly and enemy unit positions. The friendly position is gathered via tactical network. In the case of tactical network failure the information about units are not available. The tactical simulator can be used as a tool that is capable to predict movements of units in respect of terrain features. Article deals with an experiment that was based on Czech C2 system that is in the case of connectivity lost fed by VR Forces simulator. Article analyzes maximum time interval in which the position created by simulator is still usable and truthful for commander in real time.

Keywords: command and control system, movement prediction, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
1756 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: Artificial neural network, load estimation, regional survey, rural electrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1755 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
1754 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists

Authors: K. Hołda, D. Śliwa, K. Daniec

Abstract:

This article was created as part of the developed master's thesis. It attempts to present a developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.

Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
1753 Experimental Investigation of Chatter Vibrations in Facing and Turning Processes

Authors: M. Siddhpura, R. Paurobally

Abstract:

This paper investigates the occurrence of regenerative chatter vibrations in facing and turning processes. Orthogonal turning (facing) and normal turning experiments are carried out under stable as well as in the presence of controlled chatter vibrations. The effects of chatter vibrations on various sensor signals are captured and analyzed using frequency domain methods, which successfully detected the chatter vibrations close to the dominant mode of the machine tool system.

Keywords: Chatter vibrations, facing, turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582
1752 University Students Awareness on M-Learning

Authors: Sahilu Wendeson, Wan Fatimah Bt. Wan Ahmad, Nazleeni Samiha Bt. Haron

Abstract:

Mobile learning (M-learning) is the current technology that is becoming more popular. It uses the current mobile and wireless computing technology to complement the effectiveness of traditional learning process. The objective of this paper is presents a survey from 90 undergraduate students of Universiti Teknologi PETRONAS (UTP), to identify the students- perception on Mlearning. From the results, the students are willing to use M-learning. The acceptance level of the students is high, and the results obtained revealed that the respondents almost accept M-learning as one method of teaching and learning process and also able to improve the educational efficiency by complementing traditional learning in UTP.

Keywords: M-learning, Traditional learning, WirelessTechnology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
1751 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: Deep learning network, smart metering, water end use, water-energy data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
1750 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1749 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes.

The transportation network is expressed by a weighted graph G=(V,E,D,P) where every vertex represents a location to be served and contains unordered pairs (edges) of elements in V that indicate a simple road. The distances / cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D andrespectively.

Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition.

In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one. 

Keywords: bi-criteria, pollution, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1748 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Authors: Paul Lajbcygier, Seng Lee

Abstract:

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Keywords: Artificial neural networks, co-integration, forecasting, trading rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1747 Using Data Fusion for Biometric Verification

Authors: Richard A. Wasniowski

Abstract:

A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.

Keywords: Multimodal, biometric, recognition, fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1746 ANFIS Modeling of the Surface Roughness in Grinding Process

Authors: H. Baseri, G. Alinejad

Abstract:

The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.

Keywords: Grinding, ANFIS, Neural network, Disc dressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
1745 Integration of Multi-Source Data to Monitor Coral Biodiversity

Authors: K. Jitkue, W. Srisang, C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

This study aims at using multi-source data to monitor coral biodiversity and coral bleaching. We used coral reef at Racha Islands, Phuket as a study area. There were three sources of data: coral diversity, sensor based data and satellite data.

Keywords: Coral reefs, Remote sensing, Sea surfacetemperatue, Satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1744 ATC in Competitive Electricity Market Using TCSC

Authors: S. K. Gupta, Richa Bansal

Abstract:

In a deregulated power system structure, power producers and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their available transfer capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.

Keywords: Available Transfer Capability, FACTS devices, Power Transfer Distribution Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
1743 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta

Abstract:

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.

Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1742 A Neural Network Based Facial Expression Analysis using Gabor Wavelets

Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar

Abstract:

Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.

Keywords: Face Expression, Radial Basis Function, GaborWavelet Transform, Human Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
1741 Internet Governance based on Multiple-Stakeholders: Opportunities, Issues and Developments

Authors: Martin Hans Knahl

Abstract:

The Internet is the global data communications infrastructure based on the interconnection of both public and private networks using protocols that implement Internetworking on a global scale. Hence the control of protocol and infrastructure development, resource allocation and network operation are crucial and interlinked aspects. Internet Governance is the hotly debated and contentious subject that refers to the global control and operation of key Internet infrastructure such as domain name servers and resources such as domain names. It is impossible to separate technical and political positions as they are interlinked. Furthermore the existence of a global market, transparency and competition impact upon Internet Governance and related topics such as network neutrality and security. Current trends and developments regarding Internet governance with a focus on the policy-making process, security and control have been observed to evaluate current and future implications on the Internet. The multi stakeholder approach to Internet Governance discussed in this paper presents a number of opportunities, issues and developments that will affect the future direction of the Internet. Internet operation, maintenance and advisory organisations such as the Internet Corporation for Assigned Names and Numbers (ICANN) or the Internet Governance Forum (IGF) are currently in the process of formulating policies for future Internet Governance. Given the controversial nature of the issues at stake and the current lack of agreement it is predicted that institutional as well as market governance will remain present for the network access and content.

Keywords: Internet Governance, ICANN, Democracy, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1740 A Survey of Job Scheduling and Resource Management in Grid Computing

Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan

Abstract:

Grid computing is a form of distributed computing that involves coordinating and sharing computational power, data storage and network resources across dynamic and geographically dispersed organizations. Scheduling onto the Grid is NP-complete, so there is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. Job and resource scheduling is one of the key research area in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application need with the available computing resources. Motivation of the survey is to encourage the amateur researcher in the field of grid computing, so that they can understand easily the concept of scheduling and can contribute in developing more efficient scheduling algorithm. This will benefit interested researchers to carry out further work in this thrust area of research.

Keywords: Grid Computing, Job Scheduling, ResourceScheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418
1739 A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Authors: Kostas Siozios, Dimitrios Soudris, Antonios Thanailakis

Abstract:

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Keywords: Design Methodology, FPGA, Interconnection, Low-Energy, High-Performance, CAD tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1738 H-ARQ Techniques for Wireless Systems with Punctured Non-Binary LDPC as FEC Code

Authors: Ł. Kiedrowski, H. Gierszal, W. Hołubowicz

Abstract:

This paper presents the H-ARQ techniques comparison for OFDM systems with a new family of non-binary LDPC codes which has been developed within the EU FP7 DAVINCI project. The punctured NB-LDPC codes have been used in a simulated model of the transmission system. The link level performance has been evaluated in terms of spectral efficiency, codeword error rate and average number of retransmissions. The NB-LDPC codes can be easily and effective implemented with different methods of the retransmission needed if correct decoding of a codeword failed. Here the Optimal Symbol Selection method is proposed as a Chase Combining technique.

Keywords: H-ARQ, LDPC, Non-Binary, Punctured Codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1737 Remote Control Software for Rohde and Schwarz Instruments

Authors: Tomas Shejbal, Matej Petkov, Tomas Zalabsky, Jan Pidanic, Zdenek Nemec

Abstract:

The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.

Keywords: Remote control, Rohde&Schwarz, SCPI, VISA, MATLAB, spectum analyzer, network analyzer, oscilloscope, signal generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5414