Search results for: optimization problem.
4700 An Effective Algorithm for Minimum Weighted Vertex Cover Problem
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.
Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38844699 A PSO-based SSSC Controller for Improvement of Transient Stability Performance
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.
Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26904698 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data
Authors: Ayudhia P. Gusti, Semin
Abstract:
It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.
Keywords: Maritime transportation, reducing fuel, shipping log data, speed optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17384697 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19414696 Fault Location Identification in High Voltage Transmission Lines
Authors: Khaled M. El Naggar
Abstract:
This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.
Keywords: Optimization, estimation, faults, measurement, high voltage, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8424695 Building Gabor Filters from Retinal Responses
Authors: Johannes Partzsch, Christian Mayr, Rene Schuffny
Abstract:
Starting from a biologically inspired framework, Gabor filters were built up from retinal filters via LMSE algorithms. Asubset of retinal filter kernels was chosen to form a particular Gabor filter by using a weighted sum. One-dimensional optimization approaches were shown to be inappropriate for the problem. All model parameters were fixed with biological or image processing constraints. Detailed analysis of the optimization procedure led to the introduction of a minimization constraint. Finally, quantization of weighting factors was investigated. This resulted in an optimized cascaded structure of a Gabor filter bank implementation with lower computational cost.
Keywords: Gabor filter, image processing, optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23984694 Implementation of Heuristics for Solving Travelling Salesman Problem Using Nearest Neighbour and Minimum Spanning Tree Algorithms
Authors: Fatma A. Karkory, Ali A. Abudalmola
Abstract:
The travelling salesman problem (TSP) is a combinatorial optimization problem in which the goal is to find the shortest path between different cities that the salesman takes. In other words, the problem deals with finding a route covering all cities so that total distance and execution time is minimized. This paper adopts the nearest neighbor and minimum spanning tree algorithm to solve the well-known travelling salesman problem. The algorithms were implemented using java programming language. The approach is tested on three graphs that making a TSP tour instance of 5-city, 10 –city, and 229–city. The computation results validate the performance of the proposed algorithm.
Keywords: Heuristics, minimum spanning tree algorithm, Nearest Neighbor, Travelling Salesman Problem (TSP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78244693 PI Control for Second Order Delay System with Tuning Parameter Optimization
Authors: R. Farkh, K. Laabidi, M. Ksouri
Abstract:
In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem.Keywords: Genetic algorithm, Hermit-Biehler theorem, optimization, PI controller, second order delay system, stability region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17754692 Stability Analysis for a Multicriteria Problem with Linear Criteria and Parameterized Principle of Optimality “from Lexicographic to Slater“
Authors: Yury Nikulin
Abstract:
A multicriteria linear programming problem with integer variables and parameterized optimality principle "from lexicographic to Slater" is considered. A situation in which initial coefficients of penalty cost functions are not fixed but may be potentially a subject to variations is studied. For any efficient solution, appropriate measures of the quality are introduced which incorporate information about variations of penalty cost function coefficients. These measures correspond to the so-called stability and accuracy functions defined earlier for efficient solutions of a generic multicriteria combinatorial optimization problem with Pareto and lexicographic optimality principles. Various properties of such functions are studied and maximum norms of perturbations for which an efficient solution preserves the property of being efficient are calculated.
Keywords: Stability and accuracy, multicriteria optimization, lexicographic optimality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10404691 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs
Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh
Abstract:
The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.Keywords: Block layout problem, building-block layout design, CAD, optimization, search techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12424690 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.
Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20174689 Application of CPN Tools for Simulation and Analysis of Bandwidth Allocation
Authors: Julija Asmuss, Gunars Lauks, Viktors Zagorskis
Abstract:
We consider the problem of bandwidth allocation in a substrate network as an optimization problem for the aggregate utility of multiple applications with diverse requirements and describe a simulation scheme for dynamically adaptive bandwidth allocation protocols. The proposed simulation model based on Coloured Petri Nets (CPN) is realized using CPN Tools.Keywords: Bandwidth Allocation Problem, Coloured Petri Nets, CPN Tools, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19714688 A Particle Swarm Optimization Approach for the Earliness-Tardiness No-Wait Flowshop Scheduling Problem
Authors: Sedighe Arabameri, Nasser Salmasi
Abstract:
In this researcha particle swarm optimization (PSO) algorithm is proposedfor no-wait flowshopsequence dependent setuptime scheduling problem with weighted earliness-tardiness penalties as the criterion (|, |Σ " ).The smallestposition value (SPV) rule is applied to convert the continuous value of position vector of particles in PSO to job permutations.A timing algorithm is generated to find the optimal schedule and calculate the objective function value of a given sequence in PSO algorithm. Twodifferent neighborhood structures are applied to improve the solution quality of PSO algorithm.The first one is based on variable neighborhood search (VNS) and the second one is a simple one with invariable structure. In order to compare the performance of two neighborhood structures, random test problems are generated and solved by both neighborhood approaches.Computational results show that the VNS algorithmhas better performance than the other one especially for the large sized problems.Keywords: minimization of summation of weighed earliness and tardiness, no-wait flowshop scheduling, particle swarm optimization, sequence dependent setup times
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16284687 Digital Redesign of Interval Systems via Particle Swarm Optimization
Authors: Chen-Chien Hsu, Chun-Hui Gao
Abstract:
In this paper, a PSO-based approach is proposed to derive a digital controller for redesigned digital systems having an interval plant based on resemblance of the extremal gain/phase margins. By combining the interval plant and a controller as an interval system, extremal GM/PM associated with the loop transfer function can be obtained. The design problem is then formulated as an optimization problem of an aggregated error function revealing the deviation on the extremal GM/PM between the redesigned digital system and its continuous counterpart, and subsequently optimized by a proposed PSO to obtain an optimal set of parameters for the digital controller. Computer simulations have shown that frequency responses of the redesigned digital system having an interval plant bare a better resemblance to its continuous-time counter part by the incorporation of a PSO-derived digital controller in comparison to those obtained using existing open-loop discretization methods.Keywords: Digital redesign, Extremal systems, Particle swarm optimization, Uncertain interval systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12754686 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20614685 Contribution to the Query Optimization in the Object-Oriented Databases
Authors: Minyar Sassi, Amel Grissa-Touzi
Abstract:
Appeared toward 1986, the object-oriented databases management systems had not known successes knew five years after their birth. One of the major difficulties is the query optimization. We propose in this paper a new approach that permits to enrich techniques of query optimization existing in the object-oriented databases. Seen success that knew the query optimization in the relational model, our approach inspires itself of these optimization techniques and enriched it so that they can support the new concepts introduced by the object databases.Keywords: Query, query optimization, relational databases, object-oriented databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15494684 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach
Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian
Abstract:
The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.Keywords: Aggregate Production Planning, Costs, and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25864683 Decision Maturity Framework: Introducing Maturity In Heuristic Search
Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes
Abstract:
Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13564682 Feature Subset Selection Using Ant Colony Optimization
Authors: Ahmed Al-Ani
Abstract:
Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16024681 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.
Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11404680 Optimization of Lakes Aeration Process
Authors: Mohamed Abdelwahed
Abstract:
The aeration process via injectors is used to combat the lack of oxygen in lakes due to eutrophication. A 3D numerical simulation of the resulting flow using a simplified model is presented. In order to generate the best dynamic in the fluid with respect to the aeration purpose, the optimization of the injectors location is considered. We propose to adapt to this problem the topological sensitivity analysis method which gives the variation of a criterion with respect to the creation of a small hole in the domain. The main idea is to derive the topological sensitivity analysis of the physical model with respect to the insertion of an injector in the fluid flow domain. We propose in this work a topological optimization algorithm based on the studied asymptotic expansion. Finally we present some numerical results, showing the efficiency of our approachKeywords: Quasi Stokes equations, Numerical simulation, topological optimization, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14684679 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem
Authors: Gaohuizi Guo, Ning Zhang
Abstract:
Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.Keywords: Firefly algorithm, hybrid algorithm, multi-objective optimization, Sine Cosine algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5164678 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach
Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal
Abstract:
In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15544677 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9134676 Dynamic Mesh Based Airfoil Design Optimization
Authors: Zhu Xiong-feng, Hou Zhong-xi, Guo Zheng, Liu Zhao-Wei
Abstract:
A method of dynamic mesh based airfoil optimization is proposed according to the drawbacks of surrogate model based airfoil optimization. Programs are designed to achieve the dynamic mesh. Boundary condition is add by integrating commercial software Pointwise, meanwhile the CFD calculation is carried out by commercial software Fluent. The data exchange and communication between the software and programs referred above have been accomplished, and the whole optimization process is performed in iSIGHT platform. A simplified airfoil optimization study case is brought out to show that aerodynamic performances of airfoil have been significantly improved, even save massive repeat operations and increase the robustness and credibility of the optimization result. The case above proclaims that dynamic mesh based airfoil optimization is an effective and high efficient method.
Keywords: unmanned air vehicles, dynamic mesh, airfoil optimization, CFD, genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34084675 A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs
Authors: Hossein Nourkhiz Mahjoub, Mohsen Shiva
Abstract:
Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.Keywords: Mixed-Integer Non Linear Programming (MINLP), routing and scheduling, throughput, wireless mesh networks (WMNs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13744674 PSO Based Optimal Design of Fractional Order Controller for Industrial Application
Authors: Rohit Gupta, Ruchika
Abstract:
In this paper, a PSO based fractional order PID (FOPID) controller is proposed for concentration control of an isothermal Continuous Stirred Tank Reactor (CSTR) problem. CSTR is used to carry out chemical reactions in industries, which possesses complex nonlinear dynamic characteristics. Particle Swarm Optimization algorithm technique, which is an evolutionary optimization technique based on the movement and intelligence of swarm is proposed for tuning of the controller for this system. Comparisons of proposed controller with conventional and fuzzy based controller illustrate the superiority of proposed PSO-FOPID controller.Keywords: CSTR, Fractional Order PID Controller, Partical Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14874673 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines
Authors: Anis Gharbi
Abstract:
This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.
Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20024672 Performance Improvement in Internally Finned Tube by Shape Optimization
Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu
Abstract:
Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24504671 A Discrete Choice Modeling Approach to Modular Systems Design
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.Keywords: Constrained discrete combinatorial choice, modular systems design, optimization problem, PC configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020