Search results for: linear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2245

Search results for: linear programming

2095 Measuring Cognitive Load - A Solution to Ease Learning of Programming

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Learning programming is difficult for many learners. Some researches have found that the main difficulty relates to cognitive load. Cognitive overload happens in programming due to the nature of the subject which is intrinisicly over-bearing on the working memory. It happens due to the complexity of the subject itself. The problem is made worse by the poor instructional design methodology used in the teaching and learning process. Various efforts have been proposed to reduce the cognitive load, e.g. visualization softwares, part-program method etc. Use of many computer based systems have also been tried to tackle the problem. However, little success has been made to alleviate the problem. More has to be done to overcome this hurdle. This research attempts at understanding how cognitive load can be managed so as to reduce the problem of overloading. We propose a mechanism to measure the cognitive load during pre instruction, post instruction and in instructional stages of learning. This mechanism is used to help the instruction. As the load changes the instruction is made to adapt itself to ensure cognitive viability. This mechanism could be incorporated as a sub domain in the student model of various computer based instructional systems to facilitate the learning of programming.

Keywords: Cognitive load, Working memory, Cognitive Loadmeasurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
2094 Multidimensional Compromise Programming Evaluation of Digital Commerce Websites

Authors: C. Ardil

Abstract:

Multidimensional compromise programming evaluation of digital commerce websites is essential not only to have recommendations for improvement, but also to make comparisons with global business competitors. This research provides a multidimensional decision making model that prioritizes the objective criteria weights of various commerce websites using multidimensional compromise solution. Evaluation of digital commerce website quality can be considered as a complex information system structure including qualitative and quantitative factors for a multicriteria decision making problem. The proposed multicriteria decision making approach mainly consists of three sequential steps for the selection problem. In the first step, three major different evaluation criteria are characterized for website ranking problem. In the second step, identified critical criteria are weighted using the standard deviation procedure. In the third step, the multidimensional compromise programming is applied to rank the digital commerce websites.

Keywords: Standard deviation, commerce website, website evaluation, multicriteria decision making, multicriteria compromise programming, website quality, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
2093 Bioprocess Optimization Based On Relevance Vector Regression Models and Evolutionary Programming Technique

Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte

Abstract:

This paper proposes a bioprocess optimization procedure based on Relevance Vector Regression models and evolutionary programming technique. Relevance Vector Regression scheme allows developing a compact and stable data-based process model avoiding time-consuming modeling expenses. The model building and process optimization procedure could be done in a half-automated way and repeated after every new cultivation run. The proposed technique was tested in a simulated mammalian cell cultivation process. The obtained results are promising and could be attractive for optimization of industrial bioprocesses.

Keywords: Bioprocess optimization, Evolutionary programming, Relevance Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
2092 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
2091 Parallel Alternating Two-stage Methods for Solving Linear System

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present parallel alternating two-stage methods for solving linear system Ax = b, where A is a monotone matrix or an H-matrix. And we give some convergence results of these methods for nonsingular linear system.

Keywords: Parallel, alternating two-stage, convergence, linear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
2090 Implementation of SSL Using Information Security Component Interface

Authors: Jong-Whoi Shin, Chong-Sun Hwang

Abstract:

Various security APIs (Application Programming Interfaces) are being used in a variety of application areas requiring the information security function. However, these standards are not compatible, and the developer must use those APIs selectively depending on the application environment or the programming language. To resolve this problem, we propose the standard draft of the information security component, while SSL (Secure Sockets Layer) using the confidentiality and integrity component interface has been implemented to verify validity of the standard proposal. The implemented SSL uses the lower-level SSL component when establishing the RMI (Remote Method Invocation) communication between components, as if the security algorithm had been implemented by adding one more layer on the TCP/IP.

Keywords: Component Based Design, Application Programming Interface, Secure Socket Layer, Remote Method Invocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
2089 A Multi-Objective Model for Supply Chain Network Design under Stochastic Demand

Authors: F. Alborzi, H. Vafaei, M.H. Gholami, M.M. S. Esfahani

Abstract:

In this article, the design of a Supply Chain Network (SCN) consisting of several suppliers, production plants, distribution centers and retailers, is considered. Demands of retailers are considered stochastic parameters, so we generate amounts of data via simulation to extract a few demand scenarios. Then a mixed integer two-stage programming model is developed to optimize simultaneously two objectives: (1) minimization the fixed and variable cost, (2) maximization the service level. A weighting method is utilized to solve this two objective problem and a numerical example is made to show the performance of the model.

Keywords: Mixed Integer Programming, Multi-objective Optimization, Stochastic Demand, Supply Chain Design, Two Stage Programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
2088 Programming Language Extension Using Structured Query Language for Database Access

Authors: Chapman Eze Nnadozie

Abstract:

Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.

Keywords: Data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
2087 A Dynamic Programming Model for Maintenance of Electric Distribution System

Authors: Juha Korpijärvi, Jari Kortelainen

Abstract:

The paper presents dynamic programming based model as a planning tool for the maintenance of electric power systems. Every distribution component has an exponential age depending reliability function to model the fault risk. In the moment of time when the fault costs exceed the investment costs of the new component the reinvestment of the component should be made. However, in some cases the overhauling of the old component may be more economical than the reinvestment. The comparison between overhauling and reinvestment is made by optimisation process. The goal of the optimisation process is to find the cost minimising maintenance program for electric power distribution system.

Keywords: Dynamic programming, Electric distribution system, Maintenance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
2086 Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor

Authors: Dursun M., Koc F., Ozbay H.

Abstract:

In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.

Keywords: Linear switched reluctance motor, sliding door, elevator door, linear motor design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
2085 Advanced Jet Trainer and Light Attack Aircraft Selection Using Composite Programming in Multiple Criteria Decision Making Analysis Method

Authors: C. Ardil

Abstract:

In this paper, composite programming is discussed for aircraft evaluation and selection problem using the multiple criteria decision analysis method. The decision criteria and aircraft alternatives were identified from the literature review. The importance of criteria weights was determined by the standard deviation method. The proposed model is applied to a practical decision problem for evaluating and selecting advanced jet trainer and light attack aircraft. The proposed technique gives robust and efficient results in modeling multiple criteria decisions. As a result of composite programming analysis, Hürjet, an advanced jet trainer and light attack aircraft alternative (a3), was chosen as the most suitable aircraft candidate.  

Keywords: composite programming, additive weighted model, multiplicative weighted model, multiple criteria decision making analysis, MCDMA, aircraft selection, advanced jet trainer and light attack aircraft, M-346, FA-50, Hürjet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
2084 Algorithmic Skills Transferred from Secondary CSI Studies into Tertiary Education

Authors: Piroska Biró, Mária Csernoch, János Máth, Kálmán Abari

Abstract:

Testing the first year students of Informatics at the University of Debrecen revealed that students start their tertiary studies in programming with a low level of programming knowledge and algorithmic skills. The possible reasons which lead the students to this very unfortunate result were examined. The results of the test were compared to the students’ results in the school leaving exams and to their self-assessment values. It was found that there is only a slight connection between the students’ results in the test and in the school leaving exams, especially at intermediate level. Beyond this, the school leaving exams do not seem to enable students to evaluate their own abilities.

Keywords: Deep and surface approaches, metacognitive abilities, programming and algorithmic skills, school leaving exams, tracking code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
2083 On the Solution of Fully Fuzzy Linear Systems

Authors: Hsuan-Ku Liu

Abstract:

A linear system is called a fully fuzzy linear system (FFLS) if quantities in this system are all fuzzy numbers. For the FFLS, we investigate its solution and develop a new approximate method for solving the FFLS. Observing the numerical results, we find that our method is accurate than the iterative Jacobi and Gauss- Seidel methods on approximating the solution of FFLS.

Keywords: Fully fuzzy linear equations, iterative method, homotopy perturbation method, approximate solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2082 Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

Authors: Navid Mehdizadeh Afroozi, Khodakhast Isapour, Mojtaba Hakimzadeh, Abdolmohammad Davodi

Abstract:

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Keywords: Economic Dispatch (ED), Ant Colony Optimization, Fuel Cost, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
2081 Using Finite Element Method for Determination of Poles Number in Optimal Design of Linear Motor

Authors: Abdolamir Nekoubin

Abstract:

One of Effective parameters on the performance of linear induction motors is number of poles which must be selected and optimized to increase power efficiency and motor performance significantly. In this paper a double-sided linear induction motor with different poles number by using MAXWELL3D software is designed and with finite element method is analyzed electromagnetically. Then for dynamic simulation, linear motor by using MATLAB software is simulated. The results show that by adding poles number, system time response is increased and motor after more time reaches to steady state. Also propulsion force of motor is increased.

Keywords: Linear motor, poles number, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
2080 Genetic Programming Approach to Hierarchical Production Rule Discovery

Authors: Basheer M. Al-Maqaleh, Kamal K. Bharadwaj

Abstract:

Automated discovery of hierarchical structures in large data sets has been an active research area in the recent past. This paper focuses on the issue of mining generalized rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses flat rules as initial individuals of GP and discovers hierarchical structure. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Genetic Programming, Hierarchy, Knowledge Discovery in Database, Subsumption Matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2079 HaskellFL: A Tool for Detecting Logical Errors in Haskell

Authors: Vanessa Vasconcelos, Mariza A. S. Bigonha

Abstract:

Understanding and using the functional paradigm is a challenge for many programmers. Looking for logical errors in code may take a lot of a developer’s time when a program grows in size. In order to facilitate both processes, this paper presents HaskellFL, a tool that uses fault localization techniques to locate a logical error in Haskell code. The Haskell subset used in this work is sufficiently expressive for those studying Functional Programming to get immediate help debugging their code and to answer questions about key concepts associated with the functional paradigm. HaskellFL was tested against Functional Programming assignments submitted by students enrolled at the Functional Programming class at the Federal University of Minas Gerais and against exercises from the Exercism Haskell track that are publicly available in GitHub. This work also evaluated the effectiveness of two fault localization techniques, Tarantula and Ochiai, in the Haskell context. Furthermore, the EXAM score was chosen to evaluate the tool’s effectiveness, and results showed that HaskellFL reduced the effort needed to locate an error for all tested scenarios. The results also showed that the Ochiai method was more effective than Tarantula.

Keywords: Debug, fault localization, functional programming, Haskell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
2078 Interactive Fuzzy Multi-objective Programming in Land Re-organisational Planning for Sustainable Rural Development

Authors: Bijaya Krushna Mangaraj, Deepak Kumar Das

Abstract:

Sustainability in rural production system can only be achieved if it can suitably satisfy the local requirement as well as the outside demand with the changing time. With the increased pressure from the food sector in a globalised world, the agrarian economy needs to re-organise its cultivable land system to be compatible with new management practices as well as the multiple needs of various stakeholders and the changing resource scenario. An attempt has been made to transform this problem into a multi-objective decisionmaking problem considering various objectives, resource constraints and conditional constraints. An interactive fuzzy multi-objective programming approach has been used for such a purpose taking a case study in Indian context to demonstrate the validity of the method.

Keywords: Land re-organisation, Crop planning, Multiobjective Decision-Making, Fuzzy Goal Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
2077 Stochastic Mixed 0-1 Integer Programming Applied to International Transportation Problems under Uncertainty

Authors: Y. Wu

Abstract:

Today-s business has inevitably been set in the global supply chain management environment. International transportation has never played such an important role in the global supply chain network, because movement of shipments from one country to another tends to be more frequent than ever before. This paper studies international transportation problems experienced by an international transportation company. Because of the limited fleet capacity, the transportation company has to hire additional trucks from two countries in advance. However, customer-s shipment information is uncertain, and decisions have to be made before accurate information can be obtained. This paper proposes a stochastic mixed 0-1 programming model to solve the international transportation problems under uncertain demand. A series of experiments demonstrate the effectiveness of the proposed stochastic model.

Keywords: Global supply chain management, international transportation, stochastic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2076 Delay-independent Stabilization of Linear Systems with Multiple Time-delays

Authors: Ping He, Heng-You Lan, Gong-Quan Tan

Abstract:

The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.

Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
2075 Facility Location Selection using Preference Programming

Authors: C. Ardil

Abstract:

This paper presents preference programming technique based multiple criteria decision making analysis for selecting a facility location for a new organization or expansion of an existing facility which is of vital importance for a decision support system and strategic planning process. The implementation of decision support systems is considered crucial to sustain competitive advantage and profitability persistence in turbulent environment. As an effective strategic management and decision making is necessary, multiple criteria decision making analysis supports the decision makers to formulate and implement the right strategy. The investment cost associated with acquiring the property and facility construction makes the facility location selection problem a long-term strategic investment decision, which rationalize the best location selection which results in higher economic benefits through increased productivity and optimal distribution network. Selecting the proper facility location from a given set of alternatives is a difficult task, as many potential qualitative and quantitative multiple conflicting criteria are to be considered. This paper solves a facility location selection problem using preference programming, which is an effective multiple criteria decision making analysis tool applied to deal with complex decision problems in the operational research environment. The ranking results of preference programming are compared with WSM, TOPSIS and VIKOR methods.

Keywords: Facility Location Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, Preference Programming, Location Selection, WSM, TOPSIS, VIKOR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
2074 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation

Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya

Abstract:

Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.

Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
2073 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
2072 Airport Check-In Optimization by IP and Simulation in Combination

Authors: Ahmad Thanyan Al-Sultan

Abstract:

The check-in area of airport terminal is one of the busiest sections at airports at certain periods. The passengers are subjected to queues and delays during the check-in process. These delays and queues are due to constraints in the capacity of service facilities. In this project, the airport terminal is decomposed into several check-in areas. The airport check-in scheduling problem requires both a deterministic (integer programming) and stochastic (simulation) approach. Integer programming formulations are provided to minimize the total number of counters in each check-in area under the realistic constraint that counters for one and the same flight should be adjacent and the desired number of counters remaining in each area should be fixed during check-in operations. By using simulation, the airport system can be modeled to study the effects of various parameters such as number of passengers on a flight and check-in counter opening and closing time.

Keywords: Airport terminal, Integer programming, Scheduling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
2071 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets

Authors: Satjaporn Tungsong, Gun Srijuntongsiri

Abstract:

This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.

Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
2070 A Note on the Convergence of the Generalized AOR Iterative Method for Linear Systems

Authors: Zhong-xi Gao, Hou-biao Li

Abstract:

Recently, some convergent results of the generalized AOR iterative (GAOR) method for solving linear systems with strictly diagonally dominant matrices are presented in [Darvishi, M.T., Hessari, P.: On convergence of the generalized AOR method for linear systems with diagonally dominant cofficient matrices. Appl. Math. Comput. 176, 128-133 (2006)] and [Tian, G.X., Huang, T.Z., Cui, S.Y.: Convergence of generalized AOR iterative method for linear systems with strictly diagonally dominant cofficient matrices. J. Comp. Appl. Math. 213, 240-247 (2008)]. In this paper, we give the convergence of the GAOR method for linear systems with strictly doubly diagonally dominant matrix, which improves these corresponding results.

Keywords: Diagonally dominant matrix, GAOR method, Linear system, Convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
2069 Approximation Approach to Linear Filtering Problem with Correlated Noise

Authors: Hong Son Hoang, Remy Baraille

Abstract:

The (sub)-optimal soolution of linear filtering problem with correlated noises is considered. The special recursive form of the class of filters and criteria for selecting the best estimator are the essential elements of the design method. The properties of the proposed filter are studied. In particular, for Markovian observation noise, the approximate filter becomes an optimal Gevers-Kailath filter subject to a special choice of the parameter in the class of given linear recursive filters.

Keywords: Linear dynamical system, filtering, minimum meansquare filter, correlated noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
2068 Perturbation Based Search Method for Solving Unconstrained Binary Quadratic Programming Problem

Authors: Muthu Solayappan, Kien Ming Ng, Kim Leng Poh

Abstract:

This paper presents a perturbation based search method to solve the unconstrained binary quadratic programming problem. The proposed algorithm was tested with some of the standard test problems and the results are reported for 10 instances of 50, 100, 250, & 500 variable problems. A comparison of the performance of the proposed algorithm with other heuristics and optimization software is made. Based on the results, it was found that the proposed algorithm is computationally inexpensive and the solutions obtained match the best known solutions for smaller sized problems. For larger instances, the algorithm is capable of finding a solution within 0.11% of the best known solution. Apart from being used as a stand-alone method, this algorithm could also be incorporated with other heuristics to find better solutions.

Keywords: unconstrained binary quadratic programming, perturbation, interior point methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
2067 Two New Relative Efficiencies of Linear Weighted Regression

Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian

Abstract:

In statistics parameter theory, usually the parameter estimations have two kinds, one is the least-square estimation (LSE), and the other is the best linear unbiased estimation (BLUE). Due to the determining theorem of minimum variance unbiased estimator (MVUE), the parameter estimation of BLUE in linear model is most ideal. But since the calculations are complicated or the covariance is not given, people are hardly to get the solution. Therefore, people prefer to use LSE rather than BLUE. And this substitution will take some losses. To quantize the losses, many scholars have presented many kinds of different relative efficiencies in different views. For the linear weighted regression model, this paper discusses the relative efficiencies of LSE of β to BLUE of β. It also defines two new relative efficiencies and gives their lower bounds.

Keywords: Linear weighted regression, Relative efficiency, Lower bound, Parameter estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
2066 Integer Programming Model for the Network Design Problem with Facility Dependent Shortest Path Routing

Authors: Taehan Lee

Abstract:

We consider a network design problem which has shortest routing restriction based on the values determined by the installed facilities on each arc. In conventional multicommodity network design problem, a commodity can be routed through any possible path when the capacity is available. But, we consider a problem in which the commodity between two nodes must be routed on a path which has shortest metric value and the link metric value is determined by the installed facilities on the link. By this routing restriction, the problem has a distinct characteristic. We present an integer programming formulation containing the primal-dual optimality conditions to the shortest path routing. We give some computational results for the model.

Keywords: Integer programming, multicommodity network design, routing, shortest path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056