Search results for: intra-abdominal pressure.
1199 Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment
Authors: Anish H. Gandhi, Harit K. Raval
Abstract:
Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.Keywords: Carbon steel, Finite element analysis, Layeredmaterial, Springback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331198 Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes
Authors: Olumuyiwa A. Lasode, Tajudeen O. Popoola, B. V. S. S. S. Prasad
Abstract:
Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.
Keywords: Elliptic Pipes, Liquefied Petroleum Gas, Numerical Study, Pressure Drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29101197 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen
Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari
Abstract:
This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371196 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia
Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan
Abstract:
In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.
Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411195 Flow Characteristics Impeller Change of an Axial Turbo Fan
Authors: Young-Kyun Kim, Tae-Gu Lee, Jin-Huek Hur, Sung-Jae Moon, Jae-Heon Lee
Abstract:
In this paper, three dimensional flow characteristic was presented by a revision of an impeller of an axial turbo fan for improving the airflow rate and the static pressure. TO consider an incompressible steady three-dimensional flow, the RANS equations are used as the governing equations, and the standard k-ε turbulence model is chosen. The pitch angles of 44°, 54°, 59°, and 64° are implemented for the numerical model. The numerical results show that airflow rates of each pitch angle are 1,175 CMH, 1,270 CMH, 1,340 CMH, and 800 CMH, respectively. The difference of the static pressure at impeller inlet and outlet are 120 Pa, 214 Pa, 242 Pa, and 60 Pa according to respective pitch angles. It means that the 59° of the impeller pitch angle is optimal to improve the airflow rate and the static pressure.Keywords: Axial turbo fan, Impeller, Blade, Pitch angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26951194 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes
Authors: Siddharth Ahuja, T. M. Muruganandam
Abstract:
An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.
Keywords: Analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8821193 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12591192 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model
Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali
Abstract:
The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351191 Effects of Pipe Curvature and Internal Pressure on Stiffness and Buckling Phenomenon of Circular Thin-Walled Pipes
Authors: V. Polenta, S. D. Garvey, D. Chronopoulos, A. C. Long, H. P. Morvan
Abstract:
A parametric study on circular thin-walled pipes subjected to pure bending is performed. Both straight and curved pipes are considered. Ratio D/t, initial pipe curvature and internal pressure are the parameters varying in the analyses. The study is mainly FEA-based. It is found that negative curvatures (opposite to bending moment) considerably increase stiffness and buckling limit of the pipe when no internal pressure is acting and, similarly, positive curvatures decrease the stiffness and buckling limit. For internal pressurised pipes the effects of initial pipe curvature are less relevant. Results show that this phenomenon is in relationship with the cross-section deformation due to bending moment, which undergoes relevant ovalisation for no pressurised pipes and little ovalisation for pressurised pipes.
Keywords: Buckling, curved pipes, internal pressure, ovalisation, pure bending, thin-walled pipes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43271190 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature
Authors: Kyoung Hoon Kim
Abstract:
Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100oC to 140oC using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.
Keywords: Organic Rankine cycle (ORC), low temperature heat source, exergy, source temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18801189 Consolidation of Al-2024 Powder by Conventional P/M Route and ECAP – A Comparative Study
Authors: Nishtha Gupta , S.Ramesh Kumar , B.Ravisankar, S.Kumaran
Abstract:
In this study, mechanically alloyed Al 2024 powder is densified by conventional sintering and by equal channel angular pressing (ECAP) with and without back pressure. The powder was encapsulated in an aluminium can for consolidation through ECAP. The properties obtained in the compacts by conventional sintering route and by ECAP are compared. The effect of conventional sintering and ECAP on consolidation behaviour of powder, microstructure, density and hardness is discussed. Room temperature back pressure aided ECAP results in nearly full denser (97% of its theoretical density) compact at room temperature. NanoIndentation technique was used to determine the modulus of the consolidated compacts.Keywords: Al-2024, Back Pressure, ECAP, Nanoindentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171188 Spatial Objects Shaping with High-Pressure Abrasive Water Jet Controlled By Virtual Image Luminance
Authors: P. J. Borkowski, J. A. Borkowski
Abstract:
The paper presents a novel method for the 3D shaping of different materials using a high-pressure abrasive water jet and a flat target image. For steering movement process of the jet a principle similar to raster image way of record and readout was used. However, respective colors of pixel of such a bitmap are connected with adequate jet feed rate that causes erosion of material with adequate depth. Thanks to that innovation, one can observe spatial imaging of the object. Theoretical basis as well as spatial model of material shaping and experimental stand including steering program are presented in. There are also presented methodic and some experimental erosion results as well as practical example of object-s bas-relief made of metal.Keywords: High-pressure, abrasive, water jet, material shaping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14261187 Arduino Pressure Sensor Cushion for Tracking and Improving Sitting Posture
Authors: Andrew Hwang
Abstract:
The average American worker sits for thirteen hours a day, often with poor posture and infrequent breaks, which can lead to health issues and back problems. The Smart Cushion was created to alert individuals of their poor postures, and may potentially alleviate back problems and correct poor posture. The Smart Cushion is a portable, rectangular, foam cushion, with five strategically placed pressure sensors, that utilizes an Arduino Uno circuit board and specifically designed software, allowing it to collect data from the five pressure sensors and store the data on an SD card. The data is then compiled into graphs and compared to controlled postures. Before volunteers sat on the cushion, their levels of back pain were recorded on a scale from 1-10. Data was recorded for an hour during sitting, and then a new, corrected posture was suggested. After using the suggested posture for an hour, the volunteers described their level of discomfort on a scale from 1-10. Different patterns of sitting postures were generated that were able to serve as early warnings of potential back problems. By using the Smart Cushion, the areas where different volunteers were applying the most pressure while sitting could be identified, and the sitting postures could be corrected. Further studies regarding the relationships between posture and specific regions of the body are necessary to better understand the origins of back pain; however, the Smart Cushion is sufficient for correcting sitting posture and preventing the development of additional back pain.
Keywords: Arduino Sketch Algorithm, biomedical technology, pressure sensors, Smart Cushion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12981186 Investigation of Pre-Treatment Parameters of Rye and Triticale for Bioethanol Production
Authors: Algirdas Jasinskas, Egidijus Šarauskis, Raimondas Šarauskis, Antanas Sakalauskas
Abstract:
This paper presents the new results of energy plant – rye and triticale at yellow ripeness and ripe, pre-treatment in high pressure steam reactor and monosaccharide extraction. There were investigated the influence of steam pressure (20 to 22 bar), retention duration (180 to 240 s) and catalytic sulphuric acid concentration strength (0 to 0.5 %) on the pre-treatment process, contents of monosaccharides (glucose, arabinose, xylose, mannose) and undesirable by-compounds (furfural and HMF) in the reactor. The study has determined that the largest amount of monosaccharides (37.2 % of glucose, 2.7 % of arabinose, 8.4 % of xylose, and 1.3 % of mannose) was received in the rye at ripe, the samples of which were mixed with 0.5 % concentration of catalytic sulphuric acid, and hydrolysed in the reactor, where the pressure was 20 bar, whereas the reaction time – 240 s.Keywords: Bioethanol, Pre-treatment, Rye, Triticale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14221185 The Pressure Losses in the Model of Human Lungs
Authors: Michaela Chovancova, Pavel Niedoba
Abstract:
For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.
Keywords: Human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591184 Experimental and Numerical Studies of Drag Reduction on a Circular Cylinder
Authors: A.O. Ladjedel, B.T.Yahiaoui, C.L.Adjlout, D.O.Imine
Abstract:
In the present paper; an experimental and numerical investigations of drag reduction on a grooved circular cylinder have been performed. The experiments were carried out in closed circuit subsonic wind tunnel (TE44); the pressure distribution on the cylinder was conducted using a TE44DPS differential pressure scanner and the drag forces were measured using the TE81 balance. The display unit is linked to a computer, loaded with DATASLIM software for data analysis and logging of result. The numerical study was performed using the code ANSYS FLUENT solving the Reynolds Averaged Navier-Stokes (RANS) equations. The k-ε and k- ω SST models were tested. The results obtained from the experimental and numerical investigations have showed a reduction in the drag when using longitudinal grooves namely 2 and 6 on the cylinder.Keywords: Circular cylinder, Drag, grooves, pressure distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28241183 Natural Gas Sweetening by Wetted-Wire Column
Authors: Sarah Taheri, Shahram Ghanbari Pakdehi, Arash Rezaei
Abstract:
Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.Keywords: H2S, Natural gas, separation, wetted-wire column (WWC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061182 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft
Authors: Yan Rongxin, Sun Wei, Li Weidan
Abstract:
Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.
Keywords: Leak detection, manned spacecraft, ultrasonic, sound transmitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9641181 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation
Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh
Abstract:
In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.
Keywords: Polynomial constitutive equation, solitary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16661180 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters
Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud
Abstract:
Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.Keywords: Energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371179 Evaluation of Urban Development Proposals An ANP Approach
Authors: T. Gómez-Navarro, M. García-Melón, D. Díaz-Martín, S. Acuna-Dutra,
Abstract:
In this paper a new approach to prioritize urban planning projects in an efficient and reliable way is presented. It is based on environmental pressure indices and multicriteria decision methods. The paper introduces a rigorous method with acceptable complexity of rank ordering urban development proposals according to their environmental pressure. The technique combines the use of Environmental Pressure Indicators, the aggregation of indicators in an Environmental Pressure Index by means of the Analytic Network Process method and interpreting the information obtained from the experts during the decision-making process. The ANP method allows the aggregation of the experts- judgments on each of the indicators into one Environmental Pressure Index. In addition, ANP is based on utility ratio functions which are the most appropriate for the analysis of uncertain data, like experts- estimations. Finally, unlike the other multicriteria techniques, ANP allows the decision problem to be modelled using the relationships among dependent criteria. The method has been applied to the proposal for urban development of La Carlota airport in Caracas (Venezuela). The Venezuelan Government would like to see a recreational project develop on the abandoned area and mean a significant improvement for the capital. There are currently three options on their table which are currently under evaluation. They include a Health Club, a Residential area and a Theme Park. The participating experts coincided in the appreciation that the method proposed in this paper is useful and an improvement from traditional techniques such as environmental impact studies, lifecycle analysis, etc. They find the results obtained coherent, the process seems sufficiently rigorous and precise, and the use of resources is significantly less than in other methods.
Keywords: Environmental pressure indicators, multicriteria decision analysis, analytic network process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031178 Effect of Twelve Weeks Brisk Walking on Blood Pressure, Body Mass Index, and Anthropometric Circumference of Obese Males
Authors: Kaukab Azeem
Abstract:
Introduction: Obesity is a major health risk issue in the present day of life for one and all globally. Obesity is one of the major concerns for public health according to recent increasing trends in obesity-related diseases such as Type 2 diabetes. ( Kazuya, 1994).and hyperlipidemia, (Sakata,1990) .which are more prevalent in Japanese adults with body mass index (BMI) values Z25 kg/m2.( Japanese Ministry of Health and Welfare,1997). The purpose of the study was to assess the effect of twelve weeks of brisk walking on blood pressure and body mass index, anthropometric measurements of obese males. Method: Thirty obese (BMI= above 30) males, aged 18 to 22 years, were selected from King Fahd University of Petroleum & Minerals, Saudi Arabia. The subject-s height (cm) was measured using a stadiometer and body mass (kg) was measured with a electronic weighing machine. BMI was subsequently calculated (kg/m2). The blood pressure was measured with standardized sphygmomanometer in mm of Hg. All the measurements were taken twice before and twice after the experimental period. The pre and post anthropometric measurements of waist and hip circumference were measured with the steel tape in cm. The subjects underwent walking schedule two times in a week for 12 weeks. The 45 minute sessions of brisk walking were undertaken at an average intensity of 65% to 85% of maximum HR (HRmax; calculated as 220-age). Results & Discussion: Statistical findings revealed significant changes from pre test to post test in case of both systolic blood pressure and diastolic blood pressure in the walking group. Results also showed significant decrease in their body mass index and anthropometric measurements i.e. (waist & hip circumference). Conclusion: It was concluded that twelve weeks brisk walking is beneficial for lowering of blood pressure, body mass index, and anthropometric circumference of obese males.Keywords: Anthropometric, Blood pressure, Body mass index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30741177 Modeling and Analysis of the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer
Authors: A. H. Abdol Rahim, Alhassan Salami Tijani
Abstract:
Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME, water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.Keywords: Diffusion, gases cross-over, steady state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25511176 Strain Based Evaluation of Dents in Pressurized Pipes
Authors: Maziar Ramezani, Thomas Neitzert
Abstract:
A dent is a gross distortion of the pipe cross-section. Dent depth is defined as the maximum reduction in the diameter of the pipe compared to the original diameter. Pipeline dent finite element (FE) simulation and theoretical analysis are conducted in this paper to develop an understanding of the geometric characteristics and strain distribution in the pressurized dented pipe. Based on the results, the magnitude of the denting force increases significantly with increasing the internal pressure, and the maximum circumferential and longitudinal strains increase by increasing the internal pressure and the dent depth. The results can be used for characterizing dents and ranking their risks to the integrity of a pipeline.Keywords: dented steel pipelines, Finite element model, Internal pressure, Strain distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54921175 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows
Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani
Abstract:
In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131174 ROSA/LSTF Test on Pressurized Water Reactor Steam Generator Tube Rupture Accident Induced by Main Steam Line Break with Recovery Actions
Authors: Takeshi Takeda
Abstract:
An experiment was performed for the OECD/NEA ROSA-2 Project employing the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated a steam generator tube rupture (SGTR) accident induced by main steam line break (MSLB) with operator recovery actions in a pressurized water reactor (PWR). The primary pressure decreased to the pressure level nearly-equal to the intact steam generator (SG) secondary-side pressure even with coolant injection from the high-pressure injection (HPI) system of emergency core cooling system (ECCS) into cold legs. Multi-dimensional coolant behavior appeared such as thermal stratification in both hot and cold legs in intact loop. The RELAP5/MOD3.3 code indicated the insufficient predictions of the primary pressure, the SGTR break flow rate, and the HPI flow rate, and failed to predict the fluid temperatures in the intact loop hot and cold legs. Results obtained from the comparison among three LSTF SGTR-related tests clarified that the thermal stratification occurs in the horizontal legs by different mechanisms.
Keywords: LSTF, SGTR, thermal stratification, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7881173 Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks
Authors: Manay E., Sahin B., Yilmaz M., Gelis K.
Abstract:
In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.
Keywords: Microchannel Heat Sink, Nanofluid, Heat transfer enhancement, pressure drop
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35781172 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System
Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan
Abstract:
With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.
Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10121171 Interaction between Respiration and Low-Frequency Cardiovascular Rhythms
Authors: Vladimir I. Ponomarenko, Mikhail D. Prokhorov, Anatoly S. Karavaev
Abstract:
The interaction between respiration and low-frequency rhythms of the cardiovascular system is studied. The obtained results count in favor of the hypothesis that low-frequency rhythms in blood pressure and R-R intervals are generated in different central neural structures involved in the autonomic control of the cardiovascular systems.Keywords: Cardiovascular system, R-R intervals, blood pressure, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461170 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Authors: R. Haoui
Abstract:
The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.
Keywords: Launchers, supersonic flow, finite volume, nozzles, shock wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877