Search results for: Protein homology detection; support vectormachine; string kernel.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3785

Search results for: Protein homology detection; support vectormachine; string kernel.

3635 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels along the Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future  storms and hurricanes on coastal communities. Accurate sea level  change prediction and supplement is an important task in determining  constructions and human activities in coastal and oceanic areas. In  this study, support vector machines (SVM) is proposed to predict  daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal  parameter values of kernel function are determined using a genetic  algorithm. The SVM results are compared with the field data and  with back propagation (BP). Among the models, the SVM is superior  to BPNN and has better generalization performance.

 

Keywords: Tides, Prediction, Support Vector Machines, Genetic Algorithm, Back-Propagation Neural Network, Risk, Hazards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
3634 Efficient STAKCERT KDD Processes in Worm Detection

Authors: Madihah Mohd Saudi, Andrea J Cullen, Mike E Woodward

Abstract:

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

Keywords: data mining, incident response, KDD processes, security metrics and worm detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
3633 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
3632 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
3631 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures

Authors: Do Phuc, Nguyen Thi Kim Phung

Abstract:

In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.

Keywords: Eigenvalues, m-tree, graph database, protein structure, spectra graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
3630 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
3629 Stochastic Resonance in Nonlinear Signal Detection

Authors: Youguo Wang, Lenan Wu

Abstract:

Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.

Keywords: Probability of detection error, signal detection, stochastic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
3628 Multisensor Agent Based Intrusion Detection

Authors: Richard A. Wasniowski

Abstract:

In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.

Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
3627 L1-Convergence of Modified Trigonometric Sums

Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia

Abstract:

The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.

Keywords: Conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
3626 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation

Authors: Mohammad Javadi

Abstract:

Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.

Keywords: Brain segmentation, DTI, hierarchical, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
3625 Coefficients of Some Double Trigonometric Cosine and Sine Series

Authors: Jatinderdeep Kaur

Abstract:

In this paper, the results of Kano from one dimensional cosine and sine series are extended to two dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as class of semi convexity and class R are extended from one dimension to two dimensions. Further, the function f(x, y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function or not, has been studied. Moreover, some results are obtained which are generalization of Moricz’s results.

Keywords: Conjugate Dirichlet kernel, conjugate Fejer kernel, Fourier series, Semi-convexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
3624 Protein Secondary Structure Prediction

Authors: Manpreet Singh, Parvinder Singh Sandhu, Reet Kamal Kaur

Abstract:

Protein structure determination and prediction has been a focal research subject in the field of bioinformatics due to the importance of protein structure in understanding the biological and chemical activities of organisms. The experimental methods used by biotechnologists to determine the structures of proteins demand sophisticated equipment and time. A host of computational methods are developed to predict the location of secondary structure elements in proteins for complementing or creating insights into experimental results. However, prediction accuracies of these methods rarely exceed 70%.

Keywords: Protein, Secondary Structure, Prediction, DNA, RNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
3623 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
3622 A Kernel Classifier using Linearised Bregman Iteration

Authors: K. A. D. N. K Wimalawarne

Abstract:

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
3621 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
3620 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
3619 PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Authors: Rania A. Abul Seoud, Nahed H. Solouma, Abou-Baker M. Youssef, Yasser M. Kadah

Abstract:

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.

Keywords: Link Grammar Parser, Interaction extraction, protein-protein interaction, Natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
3618 Sericin Film: Influence of Concentration on its Physical Properties

Authors: N. Namviriyachote, N. Bang, P. Aramwit

Abstract:

Silk sericin (SS) is a glue-like protein from silkworm cocoon. With its outstanding moisturization and activation collagen synthesis properties, silk protein is applied for wound healing. Since wound dressing in film preparation can facilitate patients- convenience and reduce risk of wound contraction, SS and polyvinyl alcohol (PVA) films were prepared with various concentrations of SS. Their physical properties such as surface density, light transmission, protein dissolution and tensile modulus were investigated. The results presented that 3% SS with 2% PVA is the best ingredient for SS film forming.

Keywords: Sericin, silk protein, film, wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
3617 A System to Integrate and Manipulate Protein Database Using BioPerl and XML

Authors: Zurinahni Zainol, Rosalina Abdul Salam, Rosni Abdullah, Nur'Aini, Wahidah Husain

Abstract:

The size, complexity and number of databases used for protein information have caused bioinformatics to lag behind in adapting to the need to handle this distributed information. Integrating all the information from different databases into one database is a challenging problem. Our main research is to develop a tool which can be used to access and manipulate protein information from difference databases. In our approach, we have integrated difference databases such as Swiss-prot, PDB, Interpro, and EMBL and transformed these databases in flat file format into relational form using XML and Bioperl. As a result, we showed this tool can search different sizes of protein information stored in relational database and the result can be retrieved faster compared to flat file database. A web based user interface is provided to allow user to access or search for protein information in the local database.

Keywords: Protein sequence database, relational database, integrated database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
3616 Noise-Improved Signal Detection in Nonlinear Threshold Systems

Authors: Youguo Wang, Lenan Wu

Abstract:

We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.

Keywords: Probability of error, signal detection, stochasticresonance, threshold system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
3615 Extraction and Characterisation of Protein Fraction from Date Palm Fruit Seeds

Authors: Ibrahim A. Akasha, Lydia Campbell, Stephen R. Euston

Abstract:

Date palm (Phoenix dactylifera L.) seeds are waste streams which are considered a major problem to the food industry. They contain potentially useful protein (10-15% of the whole date-s weight). Global production, industrialisation and utilisation of dates are increasing steadily. The worldwide production of date palm fruit has increased from 1.8 million tons in 1961 to 6.9 million tons in 2005, thus from the global production of dates are almost 800.000 tonnes of date palm seeds are not currently used [1]. The current study was carried out to convert the date palm seeds into useful protein powder. Compositional analysis showed that the seeds were rich in protein and fat 5.64 and 8.14% respectively. We used several laboratory scale methods to extract proteins from seed to produce a high protein powder. These methods included simple acid or alkali extraction, with or without ultrafiltration and phenol trichloroacetic acid with acetone precipitation (Ph/TCA method). The highest protein content powder (68%) was obtained by Ph/TCA method with yield of material (44%) whereas; the use of just alkali extraction gave the lowest protein content of 8%, and a yield of 32%.

Keywords: Date palm seed, Phoenix dactylifera L., extraction of date palm seed protein

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4617
3614 A Novel Approach for Protein Classification Using Fourier Transform

Authors: A. F. Ali, D. M. Shawky

Abstract:

Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.

Keywords: Bioinformatics, Artificial Neural Networks, Protein Sequence Analysis, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
3613 Crude Protein and Ash Content in Different Coloured Phaseolus coccineus L.

Authors: Liene Strauta, Sandra Muizniece-Brasava, Ina Alsina

Abstract:

Phaseolus coccineus L. is the third most important cultivated Phaseolus species in the world. It is widely grown in Latvia due to its earliness, good taste and uniform and qualitative yield. Experiments were carried out in the laboratories of Department of Food Technology and Agronomical Analysis Scientific Laboratory at Latvia Universityof Agriculture. Beans (Phaseolus coccineus L.) crude protein, crude ash content as well as colour measurements were analyzed. Results show, that brown coloured beans have less crude protein content than others, and ash content have significant differences.

Keywords: Phaseoluscoccineus, protein, ash, colour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335
3612 Effects of Different Plant Densities on the Yield and Quality of Second Crop Sesame

Authors: Ö. Öztürk, O. Şaman

Abstract:

Sesame is one of the oldest and most important oil crops as main crop and second crop agriculture. This study was carried out to determine the effects of different inter- and intra-row spacings on the yield and yield components on second crop sesame; was set up in Antalya West Mediterranean Agricultural Research Institue in 2009. Muganlı 57 sesame cultivar was used as plant material. The field experiment was set up in a split plot design and row spacings (30, 40, 50, 60 and 70 cm) were assigned to the main plots and and intra-row spacings (5, 10, 20 and 30 cm) were assigned to the subplots. Seed yield, oil ratio, oil yield, protein ratio and protein yield were investigated. In general, wided inter row spacings and intra-row spacings, resulted in decreased seed yield, oil yield and protein yield. The highest seed yield, oil yield and protein yield (respectively, 1115.0 kg ha-1, 551.3 kg ha-1, 224.7 kg ha-1) were obtained from 30x5 cm plant density while the lowest seed yield, oil yield and protein yield (respectively, 677.0 kg ha-1, 327.0 kg ha-1, 130.0 kg ha-1) were recorded from 70x30 cm plant density. As a result, in terms of oil yield for second crop sesame agriculture, 30 cm row spacing, and 5 cm intra row spacing are the most suitable plant densities.

Keywords: Sesamum indicum L., oil ratio, oil yield, protein ratio, protein yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042
3611 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: Android malware detection, software-defined network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
3610 Structural Basis of Resistance of Helicobacterpylori DnaK to Antimicrobial Peptide Pyrrhocoricin

Authors: Musammat F. Nahar, Anna Roujeinikova

Abstract:

Bacterial molecular chaperone DnaK plays an essential role in protein folding, stress response and transmembrane targeting of proteins. DnaKs from many bacterial species, including Escherichia coli, Salmonella typhimurium and Haemophilus infleunzae are the molecular targets for the insect-derived antimicrobial peptide pyrrhocoricin. Pyrrhocoricin-like peptides bind in the substrate recognition tunnel. Despite the high degree of crossspecies sequence conservation in the substrate-binding tunnel, some bacteria are not sensitive to pyrrhocoricin. This work addresses the molecular mechanism of resistance of Helicobacter pylori DnaK to pyrrhocoricin. Homology modelling, structural and sequence analysis identify a single aminoacid substitution at the interface between the lid and the β-sandwich subdomains of the DnaK substrate-binding domain as the major determinant for its resistance.

Keywords: Helicobacter pylori, molecular chaperone DnaK, pyrrhocoricin, structural biology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
3609 Comparison of Anti-Shadoo Antibodies – Where is the Endogenous Shadoo protein?

Authors: Eszter Tóth, Ervin Welker

Abstract:

Shadoo protein (Sho) was described in 2003 as the newest member of Prion protein superfamily [1]. Sho has similar structural motifs like prion protein (PrP) that is known for its central role in transmissible spongiform enchephalopathies. Although a great number of functions have been proposed, the exact physiological function of PrP is not known yet. Investigation of the function and localization of Sho may help us to understand the function of the Prion protein superfamily. Analyzing the subcellular localization of YFP-tagged forms of Sho, we detected the protein in the plasma membrane and in the nucleus of various cell lines. To reveal the localization of the endogenous protein we generated antibodies against Shadoo as well as employed commercially available anti-Shadoo antibodies: i) EG62 anti-mouse Shadoo antibody generated by Eurogentec Ltd.; ii) S-12 anti-human Shadoo antibody by Santa Cruz Biotechnology Inc.; iii) R-12 anti-mouse Shadoo antibody by Santa Cruz Biotechnology Inc.; iv) SPRN antibody against human Shadoo by Abgent Inc. We carried out immunocytochemistry on non-transfected HeLa, Zpl 2-1, Zw 3-5, GT1-1, GT1-7 and SHSY5Y cells as well as on YFP-Sho, Sho-YFP, and YFP-GPI transfected HeLa cells. Their specificity (in antibody-peptide competition assay) and co-localization (with the YFP signal) were assessed.

Keywords: Shadoo, prion protein, immunocytochemistry, antibody-peptide competition assay, antibody.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
3608 Antioxidant and Aِntimicrobial Properties of Peptides as Bioactive Components in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, M. H. El-Kalyoubi, A. Y. Gibriel, A. A. Abou-Arab Arab

Abstract:

Dried soy protein hydrolysate powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactive compounds (soy protein hydrolysate) as antioxidant and antimicrobial were added at level of 1, 2 and 3 %.Chemical analysis and physical properties were affected by protein hydrolysate addition. The TBA values were significantly affected (P < 0.05) by the storage period and the level of soy protein hydrolysate. All the tested soybean protein hydrolysate additives showed strong antioxidant properties. Samples of soybean protein hydrolysate showed the lowest (P < 0.05) TBA values at each time of storage. The counts of all determined microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean protein hydrolysate. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was being significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing protein hydrolysate, while molds and yeast count showed a decreasing trend but not significant (P < 0.05) until the end of the storage period compared with control sample. Sensory attributes were also performed, added protein hydrolysate exhibits beany flavor which was clear about samples of 3% protein hydrolysate.

Keywords: Antioxidant, antimicrobial, isoflavones, bioactive peptide, antioxidant peptides, soybean protein hydrolysate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
3607 Accuracy of Divergence Measures for Detection of Abrupt Changes

Authors: P. Bergl

Abstract:

Numerous divergence measures (spectral distance, cepstral distance, difference of the cepstral coefficients, Kullback-Leibler divergence, distance given by the General Likelihood Ratio, distance defined by the Recursive Bayesian Changepoint Detector and the Mahalanobis measure) are compared in this study. The measures are used for detection of abrupt spectral changes in synthetic AR signals via the sliding window algorithm. Two experiments are performed; the first is focused on detection of single boundary while the second concentrates on detection of a couple of boundaries. Accuracy of detection is judged for each method; the measures are compared according to results of both experiments.

Keywords: Abrupt changes detection, autoregressive model, divergence measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
3606 SDS-induced Serine Protease Activity of an Antiviral Red Fluorescent Protein

Authors: Kalyankumar M. Matti, Chandrashekhar J. Savanurmath, Shivayogeppa B. Hinchigeri

Abstract:

A rare phenomenon of SDS-induced activation of a latent protease activity associated with the purified silkworm excretory red fluorescent protein (SE-RFP) was noticed. SE-RFP aliquots incubated with SDS for different time intervals indicated that the protein undergoes an obligatory breakdown into a number of subunits which exhibit autoproteolytic (acting upon themselves) and/or heteroproteolytic (acting on other proteins) activities. A strong serine protease activity of SE-RFP subunits on Bombyx mori nucleopolyhedrovirus (BmNPV) polyhedral protein was detected by zymography technique. A complete inhibition of BmNPV infection to silkworms was observed by the oral administration assay of the SE-RFP. Here, it is proposed that the SE-RFP prevents the initial infection of BmNPV to silkworms by obliterating the polyhedral protein. This is the first report on a silkworm red fluorescent protein that exhibits a protease activity on exposure to SDS. The present studies would help in understanding the antiviral mechanism of silkworm red fluorescent proteins.

Keywords: BmNPV, polyhedra, SE-RFP, SDS-induced protease activity, zymography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462