Search results for: Optimal Termination Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8581

Search results for: Optimal Termination Model

8431 Optimal Digital Pitch Aircraft Control

Authors: N. Popovich, P. Yan

Abstract:

In this paper a controller for the pitch angle of an aircraft regarding to the elevator deflection angle is designed. The way how the elevator angle affects pitching motion of the aircraft is pointed out, as well as, how a pitch controller can be applied for the aircraft to reach certain pitch angle. In this digital optimal system, the elevator deflection angle and pitching angle of the plane are considered to be input and output respectively. A single input single output (SISO) system is presented. A digital pitch aircraft control is demonstrated. A simulation for the whole system has been performed. The optimal control weighting vectors, Q and R have been determined.

Keywords: Aircraft, control, digital, optimal, Q and Rmatrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
8430 The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach

Authors: Ho Yuan-Hong, Hunag Chiung-Ju

Abstract:

This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a debt/GDP ratio of 0.2, increases in the debt/GDP ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the debt/GDP ratio is greater than 40%, the welfare will be negative and result in welfare loss.

Keywords: Debt sustainability, optimal debt ceiling, dynamic stochastic general equilibrium, welfare maximization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
8429 A Novel Model for Simultaneously Minimising Costs and Risks in Just-in-Time Systems Using Multi-Backup Suppliers: Part 2- Results

Authors: Faraj El Dabee, Romeo Marian, Yousef Amer

Abstract:

This paper implements the inventory model developed in the first part of this paper in a simplified problem to simultaneously reduce costs and risks in JIT systems. This model is developed to ascertain an optimal ordering strategy for procuring raw materials by using regular multi-external and local backup suppliers to reduce the total cost of the products, and at the same time to reduce the risks arising from this cost reduction within production systems. A comparison between the cost of using the JIT system and using the proposed inventory model shows the superiority of the use of the inventory model.

Keywords: Lean manufacturing, Just-in-Time (JIT), production system, cost-risk reduction, inventory model, eternal supplier, local backup supplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
8428 The Optimal Equilibrium Capacity of Information Hiding Based on Game Theory

Authors: Ziquan Hu, Kun She, Shahzad Ali, Kai Yan

Abstract:

Game theory could be used to analyze the conflicted issues in the field of information hiding. In this paper, 2-phase game can be used to build the embedder-attacker system to analyze the limits of hiding capacity of embedding algorithms: the embedder minimizes the expected damage and the attacker maximizes it. In the system, the embedder first consumes its resource to build embedded units (EU) and insert the secret information into EU. Then the attacker distributes its resource evenly to the attacked EU. The expected equilibrium damage, which is maximum damage in value from the point of view of the attacker and minimum from the embedder against the attacker, is evaluated by the case when the attacker attacks a subset from all the EU. Furthermore, the optimal equilibrium capacity of hiding information is calculated through the optimal number of EU with the embedded secret information. Finally, illustrative examples of the optimal equilibrium capacity are presented.

Keywords: 2-Phase Game, Expected Equilibrium damage, InformationHiding, Optimal Equilibrium Capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
8427 Modelling an Investment Portfolio with Mandatory and Voluntary Contributions under M-CEV Model

Authors: Amadi Ugwulo Chinyere, Lewis D. Gbarayorks, Emem N. H. Inamete

Abstract:

In this paper, the mandatory contribution, additional voluntary contribution (AVC) and administrative charges are merged together to determine the optimal investment strategy (OIS) for a pension plan member (PPM) in a defined contribution (DC) pension scheme under the modified constant elasticity of variance (M-CEV) model. We assume that the voluntary contribution is a stochastic process and a portfolio consisting of one risk free asset and one risky asset modeled by the M-CEV model is considered. Also, a stochastic differential equation consisting of PPM’s monthly contributions, voluntary contributions and administrative charges is obtained. More so, an optimization problem in the form of Hamilton Jacobi Bellman equation which is a nonlinear partial differential equation is obtained. Using power transformation and change of variables method, an explicit solution of the OIS and the value function are obtained under constant absolute risk averse (CARA). Furthermore, numerical simulations on the impact of some sensitive parameters on OIS were discussed extensively. Finally, our result generalizes some existing result in the literature.

Keywords: DC pension fund, modified constant elasticity of variance, optimal investment strategies, voluntary contribution, administrative charges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376
8426 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
8425 Investigation of Optimal Parameter Settings in Super Duplex Welding

Authors: R. M. Chandima Ratnayake, Daniel Dyakov

Abstract:

Super steel materials play a vital role in the construction and fabrication of structural, piping and pipeline components. In assuring the integrity of onshore and offshore operating systems, they enable life cycle costs to be minimized. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications plays a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process are vital to the final joint performance. Hence, an experimental investigation has been performed using an engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of the verification experiment.

Keywords: Duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
8424 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: Cascade control, multi-loop control systems, multi-objective optimization, optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
8423 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary

Abstract:

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
8422 Integrated Simulation and Optimization for Carbon Capture and Storage System

Authors: Taekyoon Park, Seok Goo Lee, Sung Ho Kim, Ung Lee, Jong Min Lee, Chonghun Han

Abstract:

CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.

Keywords: CCS, Caron Dioxide, Carbon Capture and Storage, Simulation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
8421 An Agent Based Dynamic Resource Scheduling Model with FCFS-Job Grouping Strategy in Grid Computing

Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan, Utpal Chandra Dey

Abstract:

Grid computing is a group of clusters connected over high-speed networks that involves coordinating and sharing computational power, data storage and network resources operating across dynamic and geographically dispersed locations. Resource management and job scheduling are critical tasks in grid computing. Resource selection becomes challenging due to heterogeneity and dynamic availability of resources. Job scheduling is a NP-complete problem and different heuristics may be used to reach an optimal or near optimal solution. This paper proposes a model for resource and job scheduling in dynamic grid environment. The main focus is to maximize the resource utilization and minimize processing time of jobs. Grid resource selection strategy is based on Max Heap Tree (MHT) that best suits for large scale application and root node of MHT is selected for job submission. Job grouping concept is used to maximize resource utilization for scheduling of jobs in grid computing. Proposed resource selection model and job grouping concept are used to enhance scalability, robustness, efficiency and load balancing ability of the grid.

Keywords: Agent, Grid Computing, Job Grouping, Max Heap Tree (MHT), Resource Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
8420 A Method of Effective Planning and Control of Industrial Facility Energy Consumption

Authors: Aleksandra Aleksandrovna Filimonova, Lev Sergeevich Kazarinov, Tatyana Aleksandrovna Barbasova

Abstract:

A method of effective planning and control of industrial facility energy consumption is offered. The method allows optimally arranging the management and full control of complex production facilities in accordance with the criteria of minimal technical and economic losses at the forecasting control. The method is based on the optimal construction of the power efficiency characteristics with the prescribed accuracy. The problem of optimal designing of the forecasting model is solved on the basis of three criteria: maximizing the weighted sum of the points of forecasting with the prescribed accuracy; the solving of the problem by the standard principles at the incomplete statistic data on the basis of minimization of the regularized function; minimizing the technical and economic losses due to the forecasting errors.

Keywords: Energy consumption, energy efficiency, energy management system, forecasting model, power efficiency characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
8419 Architectural Acoustic Modeling for Predicting Reverberation Time in Room Acoustic Design Using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper presents architectural acoustic modeling to estimate reverberation time in room acoustic design using multiple criteria decision making analysis. First, fundamental decision criteria were determined to evaluate the reverberation time in the room acoustic design problem. Then, the proposed model was applied to a practical decision problem to evaluate and select the optimal room acoustic design model. Finally, the optimal acoustic design of the rooms was analyzed and ranked using a multiple criteria decision making analysis method.

Keywords: Architectural acoustics, room acoustics, architectural acoustic modeling, reverberation time, room acoustic design, multiple criteria decision making analysis, decision analysis, MCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 551
8418 Solution of Optimal Reactive Power Flow using Biogeography-Based Optimization

Authors: Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay

Abstract:

Optimal reactive power flow is an optimization problem with one or more objective of minimizing the active power losses for fixed generation schedule. The control variables are generator bus voltages, transformer tap settings and reactive power output of the compensating devices placed on different bus bars. Biogeography- Based Optimization (BBO) technique has been applied to solve different kinds of optimal reactive power flow problems subject to operational constraints like power balance constraint, line flow and bus voltages limits etc. BBO searches for the global optimum mainly through two steps: Migration and Mutation. In the present work, BBO has been applied to solve the optimal reactive power flow problems on IEEE 30-bus and standard IEEE 57-bus power systems for minimization of active power loss. The superiority of the proposed method has been demonstrated. Considering the quality of the solution obtained, the proposed method seems to be a promising one for solving these problems.

Keywords: Active Power Loss, Biogeography-Based Optimization, Migration, Mutation, Optimal Reactive Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4277
8417 Robust Camera Calibration using Discrete Optimization

Authors: Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck

Abstract:

Camera calibration is an indispensable step for augmented reality or image guided applications where quantitative information should be derived from the images. Usually, a camera calibration is obtained by taking images of a special calibration object and extracting the image coordinates of projected calibration marks enabling the calculation of the projection from the 3d world coordinates to the 2d image coordinates. Thus such a procedure exhibits typical steps, including feature point localization in the acquired images, camera model fitting, correction of distortion introduced by the optics and finally an optimization of the model-s parameters. In this paper we propose to extend this list by further step concerning the identification of the optimal subset of images yielding the smallest overall calibration error. For this, we present a Monte Carlo based algorithm along with a deterministic extension that automatically determines the images yielding an optimal calibration. Finally, we present results proving that the calibration can be significantly improved by automated image selection.

Keywords: Camera Calibration, Discrete Optimization, Monte Carlo Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
8416 Optimal Maintenance Policy for a Partially Observable Two-Unit System

Authors: Leila Jafari, Viliam Makis, Akram Khaleghei G.B.

Abstract:

In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1 which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed, illustrated by a numerical example.

Keywords: Condition-Based Maintenance, Semi-Markov Decision Process, Multivariate Bayesian Control Chart, Partially Observable System, Two-unit System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
8415 Kinematic Optimal Design on a New Robotic Platform for Stair Climbing

Authors: Byung Hoon Seo, Hyun Gyu Kim, Tae Won Seo

Abstract:

Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.

Keywords: Stair climbing robot, Optimal design, Taguchi methodology, Caterpillar, Kinematic parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
8414 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
8413 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca

Abstract:

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Keywords: Transshipment model, mixed integer programming, saving algorithm, dry freight transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
8412 Optimal DG Placement in Distribution systems Using Cost/Worth Analysis

Authors: M Ahmadigorji, A. Abbaspour, A Rajabi-Ghahnavieh, M. Fotuhi- Firuzabad

Abstract:

DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth rate and load forecast uncertainty (LFU) on optimum DG location are studied.

Keywords: Distributed generation, optimal placement, cost/worthanalysis, customer interruption cost, Dynamic programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2975
8411 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
8410 A Search Algorithm for Solving the Economic Lot Scheduling Problem with Reworks under the Basic Period Approach

Authors: Yu-Jen Chang, Shih-Chieh Chen, Yu-Wei Kuo

Abstract:

In this study, we are interested in the economic lot scheduling problem (ELSP) that considers manufacturing of the serviceable products and remanufacturing of the reworked products. In this paper, we formulate a mathematical model for the ELSP with reworks using the basic period approach. In order to solve this problem, we propose a search algorithm to find the cyclic multiplier ki of each product that can be cyclically produced for every ki basic periods. This research also uses two heuristics to search for the optimal production sequence of all lots and the optimal time length of the basic period so as to minimize the average total cost. This research uses a numerical example to show the effectiveness of our approach.

Keywords: Economic lot, reworks, inventory, basic period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
8409 Optimal Opportunistic Maintenance Policy for a Two-Unit System

Authors: Nooshin Salari, Viliam Makis, Jane Doe

Abstract:

This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.

Keywords: Condition-based maintenance, opportunistic maintenance, preventive maintenance, two-unit system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
8408 Modeling the Impact of Controls on Information System Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Information system risk management helps to reduce or eliminate risk by implementing appropriate controls. In this paper, we propose a quantification model of controls impact on information system risks by automatizing the residual criticality estimation step of FMECA which is based on a inductive reasoning. For this, we defined three equations based on type and maturity of controls. For testing, the values obtained with the model were compared to estimated values given by interlocutors during different working sessions and the result is satisfactory. This model allows an optimal assessment of controls maturity and facilitates risk analysis of information system.

Keywords: Information System, Risk, Control, FMECA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
8407 An Efficient Approach for Optimal Placement of TCSC in Double Auction Power Market

Authors: Prashant Kumar Tiwari, Yog Raj Sood

Abstract:

This paper proposes an investment cost recovery based efficient and fast sequential optimization approach to optimal allocation of thyristor controlled series compensator (TCSC) in competitive power market. The optimization technique has been used with an objective to maximizing the social welfare and minimizing the device installation cost by suitable location and rating of TCSC in the system. The effectiveness of proposed approach for location of TCSC has been compared with some existing methods of TCSC placement, in terms of its impact on social welfare, TCSC investment recovery and optimal generation as well as load patterns. The results have been obtained on modified IEEE 14-bus system.

Keywords: Double auction market, Investment cost recovery, Optimal location, Social welfare, TCSC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
8406 The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters

Authors: T. Sopapirm, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.

Keywords: Buck converter, adaptive tabu search, DQ method, generalized state-space averaging method, modeling and simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
8405 Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming

Authors: Michael Todinov, Eberechi Weli

Abstract:

The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expressed as integer number), the worst-case running time of the proposed algorithm is O (n x (B+1)), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry. 

Keywords: Optimisation, railway risk reduction, budget constraints, dynamic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
8404 Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method

Authors: Mohd Herwan Sulaiman, Omar Aliman, Siti Rafidah Abdul Rahim

Abstract:

This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.

Keywords: Embedded generation (EG), load flow study, optimal allocation, real coded genetic algorithm (RCGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
8403 Optimal Solution of Constraint Satisfaction Problems

Authors: Jeffrey L. Duffany

Abstract:

An optimal solution for a large number of constraint satisfaction problems can be found using the technique of substitution and elimination of variables analogous to the technique that is used to solve systems of equations. A decision function f(A)=max(A2) is used to determine which variables to eliminate. The algorithm can be expressed in six lines and is remarkable in both its simplicity and its ability to find an optimal solution. However it is inefficient in that it needs to square the updated A matrix after each variable elimination. To overcome this inefficiency the algorithm is analyzed and it is shown that the A matrix only needs to be squared once at the first step of the algorithm and then incrementally updated for subsequent steps, resulting in significant improvement and an algorithm complexity of O(n3).

Keywords: Algorithm, complexity, constraint, np-complete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
8402 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem

Abstract:

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894