

Abstract—An optimal solution for a large number of constraint

satisfaction problems can be found using the technique of
substitution and elimination of variables analogous to the technique
that is used to solve systems of equations. A decision function
f(A)=max(A2) is used to determine which variables to eliminate. The
algorithm can be expressed in six lines and is remarkable in both its
simplicity and its ability to find an optimal solution. However it is
inefficient in that it needs to square the updated A matrix after each
variable elimination. To overcome this inefficiency the algorithm is
analyzed and it is shown that the A matrix only needs to be squared
once at the first step of the algorithm and then incrementally updated
for subsequent steps, resulting in significant improvement and an
algorithm complexity of O(n3).

Keywords—Algorithm, complexity, constraint, np-complete.

I. INTRODUCTION
UPPOSE there are n objects each of which are
incompatible with some subset of the other n-1 objects.

The problem is to partition all n objects (xi) into a set of k*
equivalence classes such that no object is incompatible with
any other object in its equivalence class and where k* is
minimum over all possible partitionings. The problem is
usually stated in terms of the adjacency matrix (A) of ones and
zeros which summarizes the compatibility of each object
(variable xi) with every other object (variable xj). A one in the
(i,j) element of the A matrix indicates incompatibility between
variables xi and xj while a zero represents compatibility. This
problem is usually referred to as an ILP (Integer Linear
Program)[1] and has the same form as a system of equations
Ax=b (Fig. 1).

Ax=b systems of equations
Ax ≤ b systems of inequalities
Ax=λx eigenvalue problem
Ax ≠ x systems of inequations

Fig. 1 Fundamental Mathematical Problems

Fig. 1 lists four fundamental problems of mathematics all of

which involve the simultaneous solution of more than one
equation, inequation[9][10] or inequality. Each of these
problem formulations involve a matrix A which which make
the general statement of the problem very concise.

J. L. Duffany is with the Electrical and Computer Engineering Department,
Universidad del Turabo, Gurabo, PR 00778 USA (e-mail:
jduffany@suagm.edu).

The first three of the problems formulations in Fig. 1 are
quite well known and have been widely studied and analyzed
in the scientific mathematical and engineering literature. The
fourth problem formulation Ax ≠ x (system of inequations)
[9][10] is not nearly as well known as the first three since the
alternative representation of the Integer Linear Program Ax=b,
x integer, is normally used. The motivation for creating a
separate formulation is that the compatibility problem may be
better characterized by using a logical or set-theoretical
formulation as opposed to trying to fit it into an existing
formulation which is inherently arithmetic. The Ax ≠ x
representation requires that addition in matrix multiplication
be interpreted as a logical union and the ≠ symbol be
interpreted as the symbol for not being a member of a set. In
other words the value of variable xi is not equal to that of any
member of some subset of the other n-1 variables, that subset
selected by values of row i of the A matrix which equal 1.

One reason for having a separate formulation for
inequations is that there are many subtle differences between
the two. Table I shows that a system of inequations usually
has a large number of suboptimal solutions and always has at
least one optimal solution. The number of optimal solutions is
related to how constrained the system is. A system of
inequations that has more than one optimal solution is called
underconstrained. If there is exactly one optimal solution and
the removal of a single constraint increases the number of
optimal solutions then the system is perfectly constrained. If
there is only one optimal solution and there is at least one
constraint whose removal does not increase the number of
optimal solutions then the system is called overconstrained. A
system of equations can have 0, 1 or an infinite number of
solutions. This represents an important difference between
equations and inequations since a system of inequations
always has at least one optimal solution.

II. CONSTRAINT SATISFACTION PROBLEMS
 Finding an optimal solution for a system of inequations is

in general an NP-hard[5][7] problem. Finding an optimal
solution for a system of inequations for solution cardinality
k*=3 is NP-complete[6]. An algorithm that can determine an
optimal solution for a system of inequations can be used to
solve a wide variety of important problems spanning across
many diverse fields from artificial intelligence[12] to
bioinformatics[11] including many problems known as
constraint satisfaction problems [12].

Optimal Solution of Constraint Satisfaction
Problems
Jeffrey L. Duffany

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

216International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

42
8.

pd
f

TABLE I
COMPARISON OF EQUATIONS AND INEQUATIONS

 Number of Solutions (q)
Equations q=1 (equations=unknowns) q= ∞ (equations<unknowns) q=0 (equations>unknowns)
Inequations q=1 (perfectly constrained) 1 < q < ∞ (underconstrained) q=1 (overconstrained)

Some constraint satisfaction problems explicitly maximize

or minimize an objective function while others do not. An
example of the latter is the n-queens problem [12] where n
queens are placed on an nxn chessboard in such a way that no
two of them are in the same row, column or diagonal. For this
problem any solution that satisfies the constraints is a valid
solution. If any valid solution can be found before all the
possibilities are searched it is known with certainty that the
problem has been solved and the algorithm can terminate at
that point.

Another category is the class of constraint problems that
also maximize or minimize an objective function. In this case
it is generally not possible to know with any certainty if an
optimal solution has been found without checking every
possibility. An example of this type of problem is the system
of inequations[3][10]. The algorithm for solving a system of
inequations can be viewed as a search of the feasible
solutions. Each time a feasible solution vector is generated the
objective function is calculated. A solution vector (s) is a
mapping of each variable xi into an integer si such that 1<= si
<= k while ensuring that si ≠ sj when A[i,j] = 1. The set of all
solution vectors can be represented by a tree with n-k*+1
levels representing all solutions of cardinality k*, k*+1,...n.
The total number of solutions equals the number of nodes in
the decision tree and grows exponentially with n. One way to
find an optimal solution s* is to check all the possibilities.

III. SUBSTITUTION OF VARIABLES
 All feasible solutions to a system of inequations can also

be generated by substitution and elimination of variables in a
manner analogous to finding a solution to a system of
equations. It is also similar to gaussian elimination except that
arithmetic addition is replace by logical OR. Two variables xi
and xj can substitute for one another only if the inequation
xi ≠ xj is not present in the system, in other words A[i,j]=0.
To solve a system of inequations using this technique two
variables xi and xj are chosen and set equal to one another xi
= xj by mapping their constraints onto one another (logical
OR). Since the two variables have been made equal one can
be substituted for the other and one of them can be eliminated
(substitution and elimination of variables).

A decision function f(A) can be used to choose a specific xi
and xj to combine. This decision function f(A) can be
considered a global decision function if it takes into account
every possible combination (i.e., for which A[i,j]=0). Perhaps
the simplest decision function is f(A)=max(A). Since all pairs
of variables that can be combined have A[i,j]=0 the decision
function f(A)=max(A) will combine with equal probability
any legal pair of variables xi and xj, i ≠ j and A[i,j]=0. This
can be called the ambivalent decision function which is
equivalent to choosing i and j at random. This procedure is

repeated recursively and the final solution vector is
determined by the standard method of back substitution.

Another decision function is f(A)=max(A2). This decision
function maximizes the number of shared constraints between
every possible pair of variables that can be combined (i.e.,
where A[i,j]=0). The idea is illustrated by Fig. 2 which
considers the block diagonal form of the A matrix which is
also known as a complete k-partite system (any system of
inequations can be derived by removing constraints from
some complete k-partite system). Considering each variable’s
constraints as a row of the A matrix the number of shared
constraints can be calculated as xi * xj (where * represents the
vector product). Performing this operation across all ij leads to
matrix multiplication and the decision function f(A)=max(A2).

In Fig. 2 the maximum value of A2 is 5 and it can be shown
that in this case (as in almost all cases) combining the pair of
variables corresponding to max(A2) leads to an optimal
solution. A simple algorithm for solving systems of
inequations based on the decision function f(A)=max(A2) is
given in Fig. 3 as algorithm ineq.

ineq(A)
ij<->max(A2)
if ij={} return A
xi=xi|xj
A=A[-j,-j]
ineq(A)

Fig. 3 The ineq algorithm

The ineq algorithm starts with a solution vector s which has
an initial value of s = (1,2,3,...n). The algorithm squares the
adjacency matrix A and finds the maximum value of A2 [i,j]
for pairs of variables that can be combined (i.e., A[i,j]=0). It
then combines variables xi and xj by taking the constraints
that are in xj but not in xi and adding them to xi (xi=xi|xj)
where | = logical OR. Then it updates the solution vector
s[j]=s[i] and eliminates variable xj (i.e., remove row and
column j from A as represented by the line A=A[-j,-j]). The
matrix A is reduced by one in dimension each time a variable
is eliminated.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

217International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

42
8.

pd
f

 The difference with gaussian elimination is that the
algorithm ineq uses logical OR instead of addition and uses a
decision function f(A)=max(A2) to determine[i,j]. Note that
ineq is recursive and stops when there is no longer any
variables to combine. A system of dimension n=100, optimal
solution cardinality k*=3 requires the decision function (for
example f(A) = max(A2)) to make 97 consecutive correct
decisions to find an optimal solution in n-k* (i.e., O(n))
iterations. This would establish the complexity of ineq at
O(n4) since squaring the A matrix is O(n3) and this must be
done O(n) times. However it is shown in the next section that
the A matrix only needs to be squared on the first iteration and
then updated for each iteration thereafter.

Any decision function that can identify two variables in the
same equivalence class with probability=1 will always find an
optimal solution s* using the ineq algorithm. For systems of
n=100 variables the decision function f(A)=max(A2) can
determine two variables in the same equivalence class of an
optimal solution s* with approximately 99.8% accuracy across
the entire system space[3]. As a result tests have shown [3] the
ineq algorithm can directly solve 90% of systems of
inequations of n=100 variables. By using the ineq algorithm
multiple times the success rate can be brought close to
100%[2,3,4]. The number of iterations required depends on
the constraint density[2] and could be of the order of several
hundred for systems of dimension n=100[2].

IV. COMPLEXITY ANALYSIS

The ineq algorithm in Fig. 3 involves the calculating the
square of a matrix (O(n3)), finding the maximum (O(n2)) and
the substitution and elimination of variables (O(n)). The
complexity is therefore dominated by the complexity of
squaring the A matrix. This is relatively inefficient since the
elimination of a variable only adds relatively few constraints
to another variable which is a relatively small change to the A
matrix. As a result the complexity if the ineq algorithm has
previously [2,3,4] been estimated at O(n4). However it can be
shown that the overall complexity can be reduced to O(n3) by
updating the A2 matrix instead of performing the full matrix
multiplication at each iteration.

 Representing the new A’ matrix as the old A matrix plus an
incremental matrix ΔA allows A’2 to be represented as in
equation (1):

 A’2 = (A + ΔA)2 = A2 + A*ΔA + ΔA*A + (ΔA)2
(1)

It is sufficient to show that one of the three terms (for
example A*ΔA) can be calculated in O(n2) time complexity
since ΔA*A is just the transpose of A*ΔA and calculation of
(ΔA)2 is the same as the other two with A replaced by ΔA.
Suppose that only one new constraint was added then ΔA
would be all zeros except for row i and column i each of
which would have a single 1. Calculation of A*ΔA copies the
columns of the A matrix that correspond to these two 1’s to an
all zero matrix which is an O(n) operation. In the general case
of combining two variables all constraints that were in
variable j but not in i are added to row and column i in a
matrix of all zeros to create ΔA. To calculate A*ΔA the
column vector corresponding to each added constraint is
copied into the appropriate column of A*ΔA and the sum of
these column vectors is placed in column i. In a worst case
this requires all of the values of the A2 to be updated resulting
in O(n2) time complexity.

ada<-0
acol<-0
for(qq in added){
acol<-acol+a[,qq]}
ada[,i]<-acol
for(qq in added){
ada[,qq]<-a[,i]}

Fig. 4 Calculation of A*ΔA matrix

Fig. 4 shows code for calculating the A*ΔA matrix where
“added” is the vector of added constraints, “acol” is a column
vector, “ada” is A*ΔA and qq is an index variable. ΔA*A is
just the transpose of A*ΔA and (ΔA)2 is calculated the same
as A*ΔA with A replaced by ΔA. Since the three matrix
additions are O(n2) the computation of A’2 from A2 is O(n2).
A total of O(n) updates could be required to complete the ineq
algorithm. In the general case therefore the complexity of the
ineq algorithm can be established as O(n)*O(n2) = O(n3).

A =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0011111
0011111
1100111
1100111
1111000
1111000
1111000

 A2 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5533222
5533222
3355222
3355222
2222444
2222444
2222444

Fig. 2 Block Diagonal Form of the A Matrix and Corresponding A2 Matrix

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

218International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

42
8.

pd
f

IV. OPTIMAL SOLUTION OF CONSTRAINT SATISFACTION
PROBLEMS

The first step is to take the desired constraint satisfaction
problem and convert it into a system of inequations. If the
problem happens to be vertex coloring (i.e., the classic
compatibility problem) then it is already in the required form.
If problem has been classified as NP-complete [8] then there
exists a polynomial time algorithm to convert the given
problem into a system of inequations[1][6]. For the 8 queens
problem the conversion can be done by creating an A matrix
(64x64) with each row representing a square on the
chessboard. The entire matrix is filled with 0’s and then a 1 is
placed in columns corresponding to chessboard squares that
are incompatible with the square represented by that particular
row. The second step would be to use the ineq algorithm
directly or in one of its powerful variations [2,3,4] to produce
a solution vector s which is shown in Fig. 5.

1 5 6 4 7 8 2 3

2 7 8 3 1 9 5 4

3 9 4 7 5 6 8 1

4 1 3 8 2 7 9 5

5 8 2 1 9 3 4 7

6 3 9 5 4 2 1 8

7 4 1 2 6 5 3 9

8 2 5 9 3 4 7 6

Fig. 5 A Solution to the 8 Queens Problem

Fig. 5 represents a vertex coloring of the chessboard
squares where each of the numbers 1 through 9 represents a
different color. It is equivalent to placing 64 queens of 9
different colors on the chessboard in such a way that no two
queens of the same color are attacking each other. In actuality
there are 8 queens of color 3, 4 and 5, 7 queens of color 1, 2,
7, 8 and 9 and 5 queens of color 6. These numbers are
arranged in such a way that no number is repeated along any
row, column or diagonal. If this were just a vertex coloring
problem the solution vector s is the desired solution and
max(s) is the solution cardinality k. In the case of the n-
queens problem the s vector must be sorted to find the largest
equivalence class to find the solution. For this type of
constraint satisfaction it is possible to recognize immediately
when an optimal solution is found. For other more general
cases the constraint density of the system of inequations can
then be calculated to give an estimate of the probability that an
optimal solution has been found [2,3,4]. The reason for this,
as shown in [2,3,4], is that there are large contiguous regions
of constraint density over which the ineq algorithm has
virtually a 100% success rate. It is a simple matter to calculate
the constraint density for any particular problem.

V. SUMMARY AND CONCLUSIONS
An optimal solution for a large number of constraint

satisfaction problems can be found using the technique of
substitution and elimination of variables analogous to the
technique that is used to solve systems of equations. A
decision function f(A)=max(A2) is used to determine which
variables to eliminate. The resulting algorithm can be
expressed in only six lines of pseudocode and is remarkable in
both its simplicity and its ability to find an optimal solution.
However it is inefficient in that it needs to square the updated
A matrix after each variable elimination. To overcome this
inefficiency the algorithm was analyzed and the importantant
result was established that the matrix A in the decision
function only needs to be squared once at the first step of the
algorithm and then incrementally updated for subsequent
steps, resulting in significant improvement and an overall
algorithm complexity of O(n3). A wide variety of algorithms
(such as backtracking) exist for searching for an optimal
solution for constraint satisfaction problems [12]. The idea of
converting these problems into of a system of inequations and
solving them using substitution and elimination of variables
represents a significant paradigm shift from the past and is an
attempt to attain a more unified viewpoint across a broad class
of important problems in many fields. Once a problem has
been converted into a system of inequations the constraint
density is easily calculated. The constraint density can be used
to estimate the difficulty of the problem [2] and estimate the
probability that an optimal solution has been found after a
given amount of effort. This unified approach may shed new
insight by allowing comparisons between systems of
inequations and other fundamental problems in mathematics.

REFERENCES
[1] C.H. Papadimitrou and K. Steiglitz, "Combinatorial Optimization:

Algorithms and Complexity", Dover, ISBM 0-486-40258-4, pp. 344.
[2] Duffany, J.L., “Statistical Characterization of NP-Complete Problems”,

Foundations of Computer Science Conference, World Computer
Congress, Las Vegas, Nevada, July 14-17, 2008.

[3] Duffany, J.L. “Systems of Inequations”, 4th LACCEI Conference,
Mayaguez, PR, June 21-23, 2006.

[4] Duffany, J.L. “Generalized Decision Function and Gradient Search
Technique for NP-Complete Problems”, XXXII CLEI Conference,
Santiago Chile, August 20-23, 2006.

[5] E. Horowitz, S. Sahni, “Fundamentals of Computer Algorithms”,
Computer Science Press, Maryland, 1978.

[6] R. M. Karp, “Reducibility among Combinatorial Problems”, In
Complexity of Computer Computation, pages 85-104. Plenum Press,
New York, 1972.

[7] Weisstein, E. W., "NP-Hard Problem." From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/NP-HardProblem.html

[8] Weisstein, E. W., "NP-Complete Problem." From MathWorld--A
Wolfram Web Resource: http:// mathworld.wolfram.com/NP-
CompleteProblem.html

[9] Weisstein, E. W., "Inequation." From MathWorld--A Wolfram Web
Resource. http:// mathworld.wolfram.com /Inequation.html

[10] Wikipedia – Inequation page: http://en.wikipedia.org /wiki/Inequation
[11] J. Manuch, D.R. Gaur, "Fitting protein chains to cubic lattice is NP-

complete", Journal of Bioinformatics and Computational Biology, Vol.
6, No. 1. (February 2008), pp. 93-106.

[12] S. Russell and P. Norvig, Ärtificial Intelligence, A Modern Approach",
Chapter 5, Second Edition, 2003, Prentice Hall, ISBN 0-13-790395-2.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

219International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

42
8.

pd
f

