
 

 

  
Abstract—An optimal solution for a large number of constraint 

satisfaction problems can be found using the technique of 
substitution and elimination of variables analogous to the technique 
that is used to solve systems of equations. A decision function 
f(A)=max(A2) is used to determine which variables to eliminate.  The 
algorithm can be expressed in six lines and is remarkable in both its 
simplicity and its ability to find an optimal solution. However it is 
inefficient in that it needs to square the updated A matrix after each 
variable elimination. To overcome this inefficiency the algorithm is 
analyzed and it is shown that the A matrix only needs to be squared 
once at the first step of the algorithm and then incrementally updated 
for subsequent steps, resulting in significant improvement and an 
algorithm complexity of O(n3). 
 

Keywords—Algorithm, complexity, constraint, np-complete.   

I. INTRODUCTION 
UPPOSE there are n objects each of which are 
incompatible with some subset of the other n-1 objects. 

The problem is to partition all n objects (xi) into a set of k* 
equivalence classes such that no object is incompatible with 
any other object in its equivalence class and where k* is 
minimum over all possible partitionings. The problem is 
usually stated in terms of the adjacency matrix (A) of ones and 
zeros which summarizes the compatibility of each object 
(variable xi) with every other object (variable xj). A one in the 
(i,j) element of the A matrix indicates incompatibility between 
variables xi and xj while a zero represents compatibility. This 
problem is usually referred to as an ILP (Integer Linear 
Program)[1] and has the same form as a system of equations 
Ax=b (Fig. 1). 
 
Ax=b              systems of equations 
Ax ≤ b           systems of inequalities 
Ax=λx             eigenvalue problem 
Ax ≠ x             systems of inequations 

 

Fig. 1  Fundamental Mathematical Problems 
 
Fig. 1 lists four fundamental problems of mathematics all of 

which involve the simultaneous solution of more than one 
equation, inequation[9][10] or inequality. Each of these 
problem formulations  involve a matrix A which which make 
the general statement of the problem very concise.  
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The first three of the problems formulations in Fig. 1 are 
quite well known and have been widely studied and analyzed 
in the scientific mathematical and engineering literature. The 
fourth problem formulation Ax ≠ x (system of inequations) 
[9][10] is not nearly as well known as the first three since the    
alternative representation of the Integer Linear Program Ax=b, 
x integer, is normally used. The motivation for creating a 
separate formulation is that the compatibility problem may be 
better characterized by using a logical or set-theoretical 
formulation as opposed to trying to fit it into an existing 
formulation which is inherently arithmetic. The Ax ≠ x 
representation requires that addition in matrix multiplication 
be interpreted as a logical union and the ≠ symbol be 
interpreted as the symbol for not being a member of a set. In 
other words the value of variable xi is not equal to that of any 
member of some subset of the other n-1 variables, that subset 
selected by values of row i of the A matrix which equal 1.  

One reason for having a separate formulation for  
inequations is that there are many subtle differences between 
the two. Table I shows that a system of inequations usually 
has a large number of suboptimal solutions and always has at 
least one optimal solution. The number of optimal solutions is 
related to how constrained the system is. A system of 
inequations that has more than one optimal solution is called 
underconstrained. If there is exactly one optimal solution and 
the removal of a single constraint increases the number of 
optimal solutions then the system is perfectly constrained. If 
there is only one optimal solution and there is at least one 
constraint whose removal does not increase the number of 
optimal solutions then the system is called overconstrained.  A 
system of equations can have 0, 1 or an infinite number of 
solutions. This represents an important difference between 
equations and inequations since a system of inequations 
always has at least one optimal solution.    

II.   CONSTRAINT SATISFACTION PROBLEMS 
 Finding an optimal solution for a system of inequations is 

in general an NP-hard[5][7] problem. Finding an optimal 
solution for a system of inequations for solution cardinality 
k*=3 is NP-complete[6]. An algorithm that can determine an 
optimal solution for a system of inequations can be used to 
solve a wide variety of important problems spanning across 
many diverse fields from artificial intelligence[12] to 
bioinformatics[11] including many problems known as 
constraint satisfaction problems [12].   
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TABLE I 
COMPARISON OF EQUATIONS AND INEQUATIONS 

 Number of Solutions (q) 
Equations  q=1 (equations=unknowns)  q= ∞ (equations<unknowns)  q=0 (equations>unknowns) 
Inequations q=1 (perfectly constrained)  1 < q < ∞  (underconstrained)  q=1  (overconstrained)  

 
Some constraint satisfaction problems explicitly maximize 

or minimize an objective function while others do not. An 
example of the latter is the n-queens problem [12] where n 
queens are placed on an nxn chessboard in such a way that no 
two of them are in the same row, column or diagonal. For this 
problem any solution that satisfies the constraints is a valid 
solution. If any valid solution can be found before all the 
possibilities are searched it is known with certainty that the 
problem has been solved and the algorithm can terminate at 
that point.  

Another category is the class of constraint problems that 
also maximize or minimize an objective function. In this case 
it is generally not possible to know with any certainty if an 
optimal solution has been found without checking every 
possibility. An example of this type of problem is the system 
of inequations[3][10]. The algorithm for solving a system of 
inequations can be viewed as a search of the feasible 
solutions. Each time a feasible solution vector is generated the 
objective function is calculated. A solution vector (s) is a 
mapping of each variable xi into an integer si such that 1<= si 
<= k while ensuring that si ≠ sj when A[i,j] = 1. The set of all 
solution vectors can be represented by a tree with n-k*+1 
levels representing all solutions of cardinality k*, k*+1,...n. 
The total number of solutions equals the number of nodes in 
the decision tree and grows exponentially with n. One way to 
find an optimal solution s* is to check all the possibilities.  

III.  SUBSTITUTION OF VARIABLES 
 All feasible solutions to a system of inequations can also 

be generated by substitution and elimination of variables in a 
manner analogous to finding a solution to a system of 
equations. It is also similar to gaussian elimination except that 
arithmetic addition is replace by logical OR. Two variables xi 
and xj can substitute for one another only if the inequation 
xi ≠ xj is not present in the system, in other words A[i,j]=0.  
To solve a system of inequations using this technique two 
variables xi and xj are chosen and set equal to one another xi 
= xj by mapping their constraints onto one another (logical 
OR). Since the two variables have been made equal one can 
be substituted for the other and one of them can be eliminated 
(substitution and elimination of variables).  

A decision function f(A) can be used to choose a specific xi 
and xj to combine. This decision function f(A) can be 
considered a global decision function if it takes into account 
every possible combination (i.e., for which A[i,j]=0). Perhaps 
the simplest decision function is f(A)=max(A). Since all pairs 
of variables that can be combined have A[i,j]=0 the decision 
function f(A)=max(A) will combine with equal probability 
any legal pair of variables xi and xj, i ≠ j and A[i,j]=0. This 
can be called the ambivalent decision function which is 
equivalent to choosing i and j at random. This procedure is 

repeated recursively and the final solution vector is 
determined by the standard method of back substitution.  

Another decision function is f(A)=max(A2). This decision 
function maximizes the number of shared constraints between 
every possible pair of variables that can be combined (i.e., 
where A[i,j]=0). The idea is illustrated by Fig. 2 which 
considers the block diagonal form of the A matrix which is 
also known as a complete k-partite system (any system of 
inequations can be derived by removing constraints from 
some complete k-partite system). Considering each variable’s 
constraints as a row of the A matrix the number of shared 
constraints can be calculated as xi * xj (where * represents the 
vector product). Performing this operation across all ij leads to 
matrix multiplication and the decision function f(A)=max(A2).  

In Fig. 2 the maximum value of A2 is 5 and it can be shown 
that in this case (as in almost all cases) combining the pair of 
variables corresponding to max(A2) leads to an optimal 
solution. A simple algorithm for solving systems of 
inequations based on the decision function f(A)=max(A2) is 
given in Fig. 3 as algorithm ineq.  

 
ineq(A) 
ij<->max(A2) 
if ij={} return A 
xi=xi|xj 
A=A[-j,-j] 
ineq(A) 

Fig. 3 The ineq algorithm 
 

The ineq algorithm starts with a solution vector s which has 
an initial value of s = (1,2,3,...n).  The algorithm squares the 
adjacency matrix A and finds the maximum value of A2 [i,j] 
for pairs of variables that can be combined (i.e., A[i,j]=0). It 
then combines variables xi and xj by taking the constraints 
that are in xj but not in xi and adding them to xi (xi=xi|xj) 
where | = logical OR. Then it updates the solution vector 
s[j]=s[i] and eliminates variable xj (i.e., remove row and 
column j from A as represented by the line A=A[-j,-j]). The 
matrix A is reduced by one in dimension each time a variable 
is eliminated. 
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 The difference with gaussian elimination is that the 
algorithm ineq uses logical OR instead of addition and uses a 
decision function f(A)=max(A2) to determine[i,j].  Note that 
ineq is recursive and stops when there is no longer any 
variables to combine. A system of dimension n=100, optimal 
solution cardinality k*=3 requires the decision function (for 
example f(A) = max(A2)) to make 97 consecutive correct 
decisions to find an optimal solution in n-k*  (i.e., O(n)) 
iterations. This would establish the complexity of ineq at 
O(n4) since squaring the A matrix is O(n3) and this must be 
done O(n) times.  However it is shown in the next section that 
the A matrix only needs to be squared on the first iteration and 
then updated for each iteration thereafter.  

Any decision function that can identify two variables in the 
same equivalence class with probability=1 will always find an 
optimal solution s* using the ineq algorithm. For systems of 
n=100 variables the decision function f(A)=max(A2) can 
determine two variables in the same equivalence class of an 
optimal solution s* with approximately 99.8% accuracy across 
the entire system space[3]. As a result tests have shown [3] the 
ineq algorithm can directly solve 90% of systems of 
inequations of n=100 variables.  By using the ineq algorithm 
multiple times the success rate can be brought close to 
100%[2,3,4]. The number of iterations required depends on 
the constraint density[2] and could be of the order of several 
hundred for systems of dimension n=100[2].  

IV.  COMPLEXITY ANALYSIS 

The ineq algorithm in Fig. 3 involves the calculating the 
square of a matrix (O(n3)), finding the maximum (O(n2)) and 
the substitution and elimination of variables (O(n)). The 
complexity is therefore dominated by the complexity of 
squaring the A matrix. This is relatively inefficient since the 
elimination of a variable only adds relatively few constraints 
to another variable which is a relatively small change to the A 
matrix. As a result the complexity if the ineq algorithm has 
previously [2,3,4] been estimated at O(n4).  However it can be 
shown that the overall complexity can be reduced to O(n3) by 
updating the A2 matrix instead of performing the full matrix 
multiplication at each iteration.  

 Representing the new A’ matrix as the old A matrix plus an 
incremental matrix ΔA allows A’2 to be represented as in 
equation (1): 

 A’2 = (A + ΔA)2 = A2 + A*ΔA + ΔA*A + (ΔA)2                 
(1) 

It is sufficient to show that one of the three terms (for 
example A*ΔA) can be calculated in O(n2) time complexity 
since ΔA*A is just the transpose of A*ΔA and calculation of 
(ΔA)2 is the same as the other two with A replaced by ΔA. 
Suppose that only one new constraint was added then ΔA 
would be all zeros except for row i and column i each of 
which would have a single 1. Calculation of A*ΔA copies the 
columns of the A matrix that correspond to these two 1’s to an 
all zero matrix which is an O(n) operation. In the general case 
of combining two variables all constraints that were in 
variable j but not in i are added to row and column i in a 
matrix of all zeros to create ΔA. To calculate A*ΔA the 
column vector corresponding to each added constraint is 
copied into the appropriate column of A*ΔA and the sum of 
these column vectors is placed in column i. In a worst case 
this requires all of the values of the A2 to be updated resulting 
in O(n2) time complexity. 

ada<-0 
acol<-0 
for(qq in added){ 
acol<-acol+a[,qq]} 
ada[,i]<-acol 
for(qq in added){ 
ada[,qq]<-a[,i]} 
 

Fig. 4 Calculation of A*ΔA matrix 

Fig. 4 shows code for calculating the A*ΔA matrix where 
“added” is the vector of added constraints, “acol” is a column 
vector, “ada” is A*ΔA and qq is an index variable. ΔA*A is 
just the transpose of A*ΔA and (ΔA)2  is calculated the same 
as A*ΔA with A replaced by ΔA.  Since the three matrix 
additions are O(n2) the computation of A’2 from A2 is O(n2). 
A total of O(n) updates could be required to complete the ineq 
algorithm.  In the general case therefore the complexity of the 
ineq algorithm can be established as O(n)*O(n2) = O(n3). 

A = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0011111
0011111
1100111
1100111
1111000
1111000
1111000

             A2 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5533222
5533222
3355222
3355222
2222444
2222444
2222444

 

 
 

Fig. 2 Block Diagonal Form of the A Matrix and Corresponding A2 Matrix 
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IV.  OPTIMAL SOLUTION OF CONSTRAINT SATISFACTION 
PROBLEMS 

The first step is to take the desired constraint satisfaction 
problem and convert it into a system of inequations. If the 
problem happens to be vertex coloring (i.e., the classic 
compatibility problem) then it is already in the required form. 
If problem has been classified as NP-complete [8] then there 
exists a polynomial time algorithm to convert the given 
problem into a system of inequations[1][6]. For the 8 queens 
problem the conversion can be done by creating an A matrix 
(64x64) with each row representing a square on the 
chessboard. The entire matrix is filled with 0’s and then a 1 is 
placed in columns corresponding to chessboard squares that 
are incompatible with the square represented by that particular 
row. The second step would be to use the ineq algorithm 
directly or in one of its powerful variations [2,3,4] to produce 
a solution vector s which is shown in Fig. 5.  
 

1 5 6 4 7 8 2 3 

2 7 8 3 1 9 5 4 

3 9 4 7 5 6 8 1 

4 1 3 8 2 7 9 5 

5 8 2 1 9 3 4 7 

6 3 9 5 4 2 1 8 

7 4 1 2 6 5 3 9 

8 2 5 9 3 4 7 6 
 

Fig. 5 A Solution to the 8 Queens Problem 

Fig. 5 represents a vertex coloring of the chessboard 
squares where each of the numbers 1 through 9 represents a 
different color.  It is equivalent to placing 64 queens of 9 
different colors on the chessboard in such a way that no two 
queens of the same color are attacking each other.  In actuality 
there are 8 queens of color 3, 4 and 5, 7 queens of color 1, 2, 
7, 8 and 9 and 5 queens of color 6. These numbers are 
arranged in such a way that no number is repeated along any 
row, column or diagonal. If this were just a vertex coloring 
problem the solution vector s is the desired solution and 
max(s) is the solution cardinality k.  In the case of the n-
queens problem the s vector must be sorted to find the largest 
equivalence class to find the solution. For this type of 
constraint satisfaction it is possible to recognize immediately 
when an optimal solution is found. For other more general 
cases the constraint density of the system of inequations can 
then be calculated to give an estimate of the probability that an 
optimal solution has been found [2,3,4]. The reason for this, 
as shown in [2,3,4], is that there are large contiguous regions 
of constraint density over which the ineq algorithm has 
virtually a 100% success rate. It is a simple matter to calculate 
the constraint density for any particular problem.   

 

V.  SUMMARY AND CONCLUSIONS 
An optimal solution for a large number of constraint 

satisfaction problems can be found using the technique of 
substitution and elimination of variables analogous to the 
technique that is used to solve systems of equations. A 
decision function f(A)=max(A2) is used to determine which 
variables to eliminate. The resulting algorithm can be 
expressed in only six lines of pseudocode and is remarkable in 
both its simplicity and its ability to find an optimal solution. 
However it is inefficient in that it needs to square the updated 
A matrix after each variable elimination. To overcome this 
inefficiency the algorithm was analyzed and the importantant 
result was established that the matrix A in the decision 
function only needs to be squared once at the first step of the 
algorithm and then incrementally updated for subsequent 
steps, resulting in significant improvement and an overall 
algorithm complexity of O(n3). A wide variety of algorithms 
(such as backtracking) exist for searching for an optimal 
solution for constraint satisfaction problems [12].  The idea of 
converting these problems into of a system of inequations and 
solving them using substitution and elimination of variables 
represents a significant paradigm shift from the past and is an 
attempt to attain a more unified viewpoint across a broad class 
of important problems in many fields. Once a problem has 
been converted into a system of inequations the constraint 
density is easily calculated. The constraint density can be used 
to estimate the difficulty of the problem [2] and estimate the 
probability that an optimal solution has been found after a 
given amount of effort.  This unified approach may shed new 
insight by allowing comparisons between systems of 
inequations and other fundamental problems in mathematics.    
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