Search results for: Fuzzy sets theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2896

Search results for: Fuzzy sets theory

1156 An Energy-Efficient Distributed Unequal Clustering Protocol for Wireless Sensor Networks

Authors: Sungju Lee, Jangsoo Lee , Hongjoong Sin, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim

Abstract:

The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to prolong the lifetime of a wireless sensor networks. In the paper, we compare several clustering protocols which significantly affect a balancing of energy consumption. And we propose an Energy-Efficient Distributed Unequal Clustering (EEDUC) algorithm which provides a new way of creating distributed clusters. In EEDUC, each sensor node sets the waiting time. This waiting time is considered as a function of residual energy, number of neighborhood nodes. EEDUC uses waiting time to distribute cluster heads. We also propose an unequal clustering mechanism to solve the hot-spot problem. Simulation results show that EEDUC distributes the cluster heads, balances the energy consumption well among the cluster heads and increases the network lifetime.

Keywords: Wireless Sensor Network, Distributed UnequalClustering, Multi-hop, Lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
1155 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
1154 Random Projections for Dimensionality Reduction in ICA

Authors: Sabrina Gaito, Andrea Greppi, Giuliano Grossi

Abstract:

In this paper we present a technique to speed up ICA based on the idea of reducing the dimensionality of the data set preserving the quality of the results. In particular we refer to FastICA algorithm which uses the Kurtosis as statistical property to be maximized. By performing a particular Johnson-Lindenstrauss like projection of the data set, we find the minimum dimensionality reduction rate ¤ü, defined as the ratio between the size k of the reduced space and the original one d, which guarantees a narrow confidence interval of such estimator with high confidence level. The derived dimensionality reduction rate depends on a system control parameter β easily computed a priori on the basis of the observations only. Extensive simulations have been done on different sets of real world signals. They show that actually the dimensionality reduction is very high, it preserves the quality of the decomposition and impressively speeds up FastICA. On the other hand, a set of signals, on which the estimated reduction rate is greater than 1, exhibits bad decomposition results if reduced, thus validating the reliability of the parameter β. We are confident that our method will lead to a better approach to real time applications.

Keywords: Independent Component Analysis, FastICA algorithm, Higher-order statistics, Johnson-Lindenstrauss lemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
1153 On the Performance of Information Criteria in Latent Segment Models

Authors: Jaime R. S. Fonseca

Abstract:

Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.

Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1152 Software Effort Estimation Models Using Radial Basis Function Network

Authors: E. Praynlin, P. Latha

Abstract:

Software Effort Estimation is the process of estimating the effort required to develop software. By estimating the effort, the cost and schedule required to estimate the software can be determined. Accurate Estimate helps the developer to allocate the resource accordingly in order to avoid cost overrun and schedule overrun. Several methods are available in order to estimate the effort among which soft computing based method plays a prominent role. Software cost estimation deals with lot of uncertainty among all soft computing methods neural network is good in handling uncertainty. In this paper Radial Basis Function Network is compared with the back propagation network and the results are validated using six data sets and it is found that RBFN is best suitable to estimate the effort. The Results are validated using two tests the error test and the statistical test.

Keywords: Software cost estimation, Radial Basis Function Network (RBFN), Back propagation function network, Mean Magnitude of Relative Error (MMRE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1151 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
1150 Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor

Authors: Chin S. Y., Radzi, S. N. R., Maharon, I. H., Shafawi, M. A.

Abstract:

A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.

Keywords: kinetic model, dehydrogenation, simulation, modeling, propane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4427
1149 A New Approach for Prioritization of Failure Modes in Design FMEA using ANOVA

Authors: Sellappan Narayanagounder, Karuppusami Gurusami

Abstract:

The traditional Failure Mode and Effects Analysis (FMEA) uses Risk Priority Number (RPN) to evaluate the risk level of a component or process. The RPN index is determined by calculating the product of severity, occurrence and detection indexes. The most critically debated disadvantage of this approach is that various sets of these three indexes may produce an identical value of RPN. This research paper seeks to address the drawbacks in traditional FMEA and to propose a new approach to overcome these shortcomings. The Risk Priority Code (RPC) is used to prioritize failure modes, when two or more failure modes have the same RPN. A new method is proposed to prioritize failure modes, when there is a disagreement in ranking scale for severity, occurrence and detection. An Analysis of Variance (ANOVA) is used to compare means of RPN values. SPSS (Statistical Package for the Social Sciences) statistical analysis package is used to analyze the data. The results presented are based on two case studies. It is found that the proposed new methodology/approach resolves the limitations of traditional FMEA approach.

Keywords: Failure mode and effects analysis, Risk priority code, Critical failure mode, Analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5436
1148 Intellectual Property Implications in the Context of Space Exploration with a Focus on European Space Agency Rules and Regulations

Authors: Linda Ana Maria Ungureanu

Abstract:

This article details the manner in which European law establishes the protection and ownership rights over works created in off-world environments or in relation to space exploration. In this sense, the analysis is focused on identifying the legal treatment applicable to creative works based on the provisions regulated under the International Space Treaties, on one side, and the International Intellectual Property (IP) Treaties and subsequent EU legislation, on the other side, with a special interest on European Space Agency (ESA) Rules and Regulations. Furthermore, the article analyses the manner in which ESA regulates the ownership regime applicable for creative works, taking into account the relationship existing between the inventor/creator and ESA and the environment in which the creative work was developed. Moreover, the article sets a series of de lege ferenda proposals for the regulation of IP matters in the context of space exploration, the main purpose being to identify legal measures and steps that need to be taken in order to ensure that creative activities are fostered and understood as a significant catalyst for encouraging space exploration.

Keywords: ESA guidelines, EU legislation, intellectual property law, international IP treaties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
1147 Exploring Additional Intention Predictors within Dietary Behavior among Type 2 Diabetes

Authors: D. O. Omondi, M. K. Walingo, G. M. Mbagaya

Abstract:

Objective: This study explored the possibility of integrating Health Belief Concepts as additional predictors of intention to adopt a recommended diet-category within the Theory of Planned Behavior (TPB). Methods: The study adopted a Sequential Exploratory Mixed Methods approach. Qualitative data were generated on attitude, subjective norm, perceived behavioral control and perceptions on predetermined diet-categories including perceived susceptibility, perceived benefits, perceived severity and cues to action. Synthesis of qualitative data was done using constant comparative approach during phase 1. A survey tool developed from qualitative results was used to collect information on the same concepts across 237 legible Type 2 diabetics. Data analysis included use of Structural Equation Modeling in Analysis of Moment Structures to explore the possibility of including perceived susceptibility, perceived benefits, perceived severity and cues to action as additional intention predictors in a single nested model. Results: Two models-one nested based on the traditional TPB model {χ2=223.3, df = 77, p = .02, χ2/df = 2.9; TLI = .93; CFI =.91; RMSEA (90CI) = .090(.039, .146)} and the newly proposed Planned Behavior Health Belief Model (PBHB) {χ2 = 743.47, df = 301, p = .019; TLI = .90; CFI=.91; RMSEA (90CI) = .079(.031, .14)} passed the goodness of fit tests based on common fit indicators used. Conclusion: The newly developed PBHB Model ranked higher than the traditional TPB model with reference made to chi-square ratios (PBHB: χ2/df = 2.47; p=0.19 against TPB: χ2/df = 2.9, p=0.02). The integrated model can be used to motivate Type 2 diabetics towards healthy eating.

Keywords: Theory, intention, predictors, mixed methods design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
1146 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1145 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
1144 Aerodynamics and Optimization of Airfoil Under Ground Effect

Authors: Kyoungwoo Park, Byeong Sam Kim, Juhee Lee, Kwang Soo Kim

Abstract:

The Prediction of aerodynamic characteristics and shape optimization of airfoil under the ground effect have been carried out by integration of computational fluid dynamics and the multiobjective Pareto-based genetic algorithm. The main flow characteristics around an airfoil of WIG craft are lift force, lift-to-drag ratio and static height stability (H.S). However, they show a strong trade-off phenomenon so that it is not easy to satisfy the design requirements simultaneously. This difficulty can be resolved by the optimal design. The above mentioned three characteristics are chosen as the objective functions and NACA0015 airfoil is considered as a baseline model in the present study. The profile of airfoil is constructed by Bezier curves with fourteen control points and these control points are adopted as the design variables. For multi-objective optimization problems, the optimal solutions are not unique but a set of non-dominated optima and they are called Pareto frontiers or Pareto sets. As the results of optimization, forty numbers of non- dominated Pareto optima can be obtained at thirty evolutions.

Keywords: Aerodynamics, Shape optimization, Airfoil on WIGcraft, Genetic algorithm, Computational fluid dynamics (CFD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
1143 Improvement of the Shortest Path Problem with Geodesic-Like Method

Authors: Wen-Haw Chen

Abstract:

This paper proposes a method to improve the shortest path problem on a NURBS (Non-uniform rational basis spline) surfaces. It comes from an application of the theory in classic differential geometry on surfaces and can improve the distance problem not only on surfaces but in the Euclidean 3-space R3 .

Keywords: shortest paths, geodesic-like method, NURBS surfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1142 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943
1141 Through the Lens of Forced Displacement: Refugee Women's Rights as Human Rights

Authors: Pearl K. Atuhaire, Sylvia Kaye

Abstract:

While the need for equal access to civil, political as well as economic, social and cultural rights is clear under the international law, the adoption of the Convention on the Elimination of all forms of Discrimination against women in 1979 made this even clearer. Despite this positive progress, the abuse of refugee women's rights is one of the basic underlying root causes of their marginalisation and violence in their countries of asylum. This paper presents a critical review on the development of refugee women's rights at the international levels and national levels. It provides an array of scholarly literature on this issue and examines the measures taken by the international community to curb the problem of violence against women in their various provisions through the instruments set. It is cognizant of the fact that even if conflict affects both refugee women and men, the effects on women refugees are deep-reaching, due to the cultural strongholds they face. An important aspect of this paper is that it is conceptualised against the fact that refugee women face the problem of sexual and gender based first as refugees and second as women, yet, their rights are stumbled upon. Often times they have been rendered "worthless victims" who are only in need of humanitarian assistance than active participants committed to change their plight through their participation in political, economic and social participation in their societies. Scholars have taken notice of the fact that women's rights in refugee settings have been marginalized and call for a need to incorporate their perspectives in the planning and management of refugee settings in which they live. Underpinning this discussion is feminism theory which gives a clear understanding of the root cause of refugee women's problems. Finally, this paper suggests that these policies should be translated into action at local, national international and regional levels to ensure sustainable peace.

Keywords: Feminism theory, human rights, refugee women, sexual and gender based violence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
1140 On Pattern-Based Programming towards the Discovery of Frequent Patterns

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop

Abstract:

The problem of frequent pattern discovery is defined as the process of searching for patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a database. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages. Such paradigm is inefficient when set of patterns is large and the frequent pattern is long. We suggest a high-level declarative style of programming apply to the problem of frequent pattern discovery. We consider two languages: Haskell and Prolog. Our intuitive idea is that the problem of finding frequent patterns should be efficiently and concisely implemented via a declarative paradigm since pattern matching is a fundamental feature supported by most functional languages and Prolog. Our frequent pattern mining implementation using the Haskell and Prolog languages confirms our hypothesis about conciseness of the program. The comparative performance studies on line-of-code, speed and memory usage of declarative versus imperative programming have been reported in the paper.

Keywords: Frequent pattern mining, functional programming, pattern matching, logic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
1139 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1138 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge

Authors: Fan Yang, Ye-lu Wang, Yang Zhao

Abstract:

The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.

Keywords: Continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
1137 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Authors: M. Tehranizadeh, E. Shoushtari Rezvani

Abstract:

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Keywords: Soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
1136 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: Digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1135 Sulphur-Mediated Precipitation of Pt/Fe/Co/CrIons in Liquid-Liquid and Gas-Liquid Chloride Systems

Authors: J. Siame, H. Kasaini

Abstract:

The proof of concept experiments were conducted to determine the feasibility of using small amounts of Dissolved Sulphur (DS) from the gaseous phase to precipitate platinum ions in chloride media. Two sets of precipitation experiments were performed in which the source of sulphur atoms was either a thiosulphate solution (Na2S2O3) or a sulphur dioxide gas (SO2). In liquid-liquid (L-L) system, complete precipitation of Pt was achieved at small dosages of Na2S2O3 (0.01 – 1.0 M) in a time interval of 3-5 minutes. On the basis of this result, gas absorption tests were carried out mainly to achieve sulphur solubility equivalent to 0.018 M. The idea that huge amounts of precious metals could be recovered selectively from their dilute solutions by utilizing the waste SO2 streams at low pressure seemed attractive from the economic and environmental point of views. Therefore, mass transfer characteristics of SO2 gas associated with reactive absorption across the gas-liquid (G-L) interface were evaluated under different conditions of pressure (0.5 – 2 bar), solution temperature ranges from 20 – 50 oC and acid strength (1 – 4 M, HCl). This paper concludes with information about selective precipitation of Pt in the presence of cations (Fe2+, Co2+, and Cr3+) in a CSTR and recommendation to scale up laboratory data to industrial pilot scale operations.

Keywords: CSTR, diffusivity, platinum, selective precipitation, sulphur dioxide, thiosulphate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
1134 Protein Graph Partitioning by Mutually Maximization of cycle-distributions

Authors: Frank Emmert Streib

Abstract:

The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.

Keywords: Graph partitioning, unweighted graph, protein domains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1133 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

Authors: Anis Gharbi

Abstract:

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
1132 M2LGP: Mining Multiple Level Gradual Patterns

Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala

Abstract:

Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.

Keywords: Gradual Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1131 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
1130 Information Measures Based on Sampling Distributions

Authors: Om Parkash, A. K. Thukral, C. P. Gandhi

Abstract:

Information theory and Statistics play an important role in Biological Sciences when we use information measures for the study of diversity and equitability. In this communication, we develop the link among the three disciplines and prove that sampling distributions can be used to develop new information measures. Our study will be an interdisciplinary and will find its applications in Biological systems.

Keywords: Entropy, concavity, symmetry, arithmetic mean, diversity, equitability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1129 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation

Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha

Abstract:

In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.

Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1128 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering

Authors: Yogita, Durga Toshniwal

Abstract:

Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.

Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636
1127 The Future of Hospitals: A Systematic Review in the Field of Architectural Design with a Disruptive Research and Development Approach

Authors: María Araya Léon, Ainoa Abella, Aura Murillo, Ricardo Guasch, Laura Clèries

Abstract:

This article aims to examine scientific theory framed within the term hospitals of the future from a multidisciplinary and cross-sectional perspective. To understand the connection that the various cross-sectional areas, we studied have with architectural spaces and to determine the future outlook of the works examined and how they can be classified into the categories of need/solution, evolution/revolution, collective/individual, and preventive/corrective. The changes currently taking place within the context of healthcare demonstrate how important these projects are and the need for companies to face future changes. A systematic review has been carried out focused on what will the hospitals of the future be like in relation to the elements that form part of their use, design, and architectural space experience, using the WOS database from 2016 to 2019. The large number of works about sensoring & big data and the scarce amount related to the area of materials is worth highlighting. Furthermore, no growth concerning future issues is envisaged over time. Regarding classifications, the articles we reviewed address evolutionary and collective solutions more, and in terms of preventive and corrective solutions, they were found at a similar level. Although our research focused on the future of hospitals, there is little evidence representing this approach. We also detected that, given the relevance of the research on how the built environment influences human health and well-being, these studies should be promoted within the context of healthcare. This article allows to find evidence on the future perspective from within the domain of hospital architecture, in order to create bridges between the productive sector of architecture and scientific theory. This will make it possible to detect R&D opportunities in each analyzed cross-section.

Keywords: Hospitals, trends, architectural space, disruptive approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296