Search results for: generalized regression neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3436

Search results for: generalized regression neural networks

1756 Trust Enhanced Dynamic Source Routing Protocol for Adhoc Networks

Authors: N. Bhalaji, A. R. Sivaramkrishnan, Sinchan Banerjee, V. Sundar, A. Shanmugam

Abstract:

Nodes in mobile Ad Hoc Network (MANET) do not rely on a central infrastructure but relay packets originated by other nodes. Mobile ad hoc networks can work properly only if the participating nodes collaborate in routing and forwarding. For individual nodes it might be advantageous not to collaborate, though. In this conceptual paper we propose a new approach based on relationship among the nodes which makes them to cooperate in an Adhoc environment. The trust unit is used to calculate the trust values of each node in the network. The calculated trust values are being used by the relationship estimator to determine the relationship status of nodes. The proposed enhanced protocol was compared with the standard DSR protocol and the results are analyzed using the network simulator-2.

Keywords: Reliable Routing, DSR, Grudger, Adhoc network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
1755 On the Impact of Reference Node Placement in Wireless Indoor Positioning Systems

Authors: Supattra Aomumpai, Chutima Prommak

Abstract:

This paper presents a studyof the impact of reference node locations on the accuracy of the indoor positioning systems. In particular, we analyze the localization accuracy of the RSSI database mapping techniques, deploying on the IEEE 802.15.4 wireless networks. The results show that the locations of the reference nodes used in the positioning systems affect the signal propagation characteristics in the service area. Thisin turn affects the accuracy of the wireless indoor positioning system. We found that suitable location of reference nodes could reduce the positioning error upto 35 %.

Keywords: Indoor positioning systems, IEEE 802.15.4 wireless networks, Signal propagation characteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
1754 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1753 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
1752 A Wireless Secure Remote Access Architecture Implementing Role Based Access Control: WiSeR

Authors: E. Tomur, R. Deregozu, T. Genc

Abstract:

In this study, we propose a network architecture for providing secure access to information resources of enterprise network from remote locations in a wireless fashion. Our proposed architecture offers a very promising solution for organizations which are in need of a secure, flexible and cost-effective remote access methodology. Security of the proposed architecture is based on Virtual Private Network technology and a special role based access control mechanism with location and time constraints. The flexibility mainly comes from the use of Internet as the communication medium and cost-effectiveness is due to the possibility of in-house implementation of the proposed architecture.

Keywords: Remote access, wireless networks, security, virtualprivate networks, RBAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1751 A Further Study on the 4-Ordered Property of Some Chordal Ring Networks

Authors: Shin-Shin Kao, Hsiu-Chunj Pan

Abstract:

Given a graph G. A cycle of G is a sequence of vertices of G such that the first and the last vertices are the same. A hamiltonian cycle of G is a cycle containing all vertices of G. The graph G is k-ordered (resp. k-ordered hamiltonian) if for any sequence of k distinct vertices of G, there exists a cycle (resp. hamiltonian cycle) in G containing these k vertices in the specified order. Obviously, any cycle in a graph is 1-ordered, 2-ordered and 3- ordered. Thus the study of any graph being k-ordered (resp. k-ordered hamiltonian) always starts with k = 4. Most studies about this topic work on graphs with no real applications. To our knowledge, the chordal ring families were the first one utilized as the underlying topology in interconnection networks and shown to be 4-ordered. Furthermore, based on our computer experimental results, it was conjectured that some of them are 4-ordered hamiltonian. In this paper, we intend to give some possible directions in proving the conjecture.

Keywords: Hamiltonian cycle, 4-ordered, Chordal rings, 3-regular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1750 130 nm CMOS Mixer and VCO for 2.4 GHz Low-power Wireless Personal Area Networks

Authors: Gianluca Cornetta, David J. Santos

Abstract:

This paper describes a 2.4 GHz passive switch mixer and a 5/2.5 GHz voltage-controlled negative Gm oscillator (VCO) with an inversion-mode MOS varactor. Both circuits are implemented using a 1P8M 0.13 μm process. The switch mixer has an input referred 1 dB compression point of -3.89 dBm and a conversion gain of -0.96 dB when the local oscillator power is +2.5 dBm. The VCO consumes only 1.75 mW, while drawing 1.45 mA from a 1.2 V supply voltage. In order to reduce the passives size, the VCO natural oscillation frequency is 5 GHz. A clocked CMOS divideby- two circuit is used for frequency division and quadrature phase generation. The VCO has a -109 dBc/Hz phase noise at 1 MHz frequency offset and a 2.35-2.5 GHz tuning range (after the frequency division), thus complying with ZigBee requirements.

Keywords: Switch Mixers, Varactors, IEEE 802.15.4 (ZigBee), Direct Conversion Receiver, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
1749 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
1748 A Multi-Radio Multi-Channel Unification Power Control for Wireless Mesh Networks

Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry

Abstract:

Multi-Radio Multi-Channel Wireless Mesh Networks (MRMC-WMNs) operate at the backbone to access and route high volumes of traffic simultaneously. Such roles demand high network capacity, and long “online" time at the expense of accelerated transmission energy depletion and poor connectivity. This is the problem of transmission power control. Numerous power control methods for wireless networks are in literature. However, contributions towards MRMC configurations still face many challenges worth considering. In this paper, an energy-efficient power selection protocol called PMMUP is suggested at the Link-Layer. This protocol first divides the MRMC-WMN into a set of unified channel graphs (UCGs). A UCG consists of multiple radios interconnected to each other via a common wireless channel. In each UCG, a stochastic linear quadratic cost function is formulated. Each user minimizes this cost function consisting of trade-off between the size of unification states and the control action. Unification state variables come from independent UCGs and higher layers of the protocol stack. The PMMUP coordinates power optimizations at the network interface cards (NICs) of wireless mesh routers. The proposed PMMUP based algorithm converges fast analytically with a linear rate. Performance evaluations through simulations confirm the efficacy of the proposed dynamic power control.

Keywords: Effective band inference based power control algorithm (EBIA), Power Selection MRMC Unification Protocol (PMMUP), MRMC State unification Variable Prediction (MRSUP), Wireless Mesh Networks (WMNs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1747 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
1746 Efficient Time Synchronization in Wireless Sensor Networks

Authors: Shehzad Ashraf Ch., Aftab Ahmed Khan, Zahid Mehmood, Muhammad Ahsan Habib, Qasim Mehmood

Abstract:

Energy efficiency is the key requirement in wireless sensor network as sensors are small, cheap and are deployed in very large number in a large geographical area, so there is no question of replacing the batteries of the sensors once deployed. Different ways can be used for efficient energy transmission including Multi-Hop algorithms, collaborative communication, cooperativecommunication, Beam- forming, routing algorithm, phase, frequency and time synchronization. The paper reviews the need for time synchronization and proposed a BFS based synchronization algorithm to achieve energy efficiency. The efficiency of our protocol has been tested and verified by simulation

Keywords: time synchronization, sensor networks, energy efficiency, breadth first search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1745 Accelerating GLA with an M-Tree

Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen

Abstract:

In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.

Keywords: Clustering, GLA, M-Tree, Vector Quantization .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1744 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: Extraction and data integration, bibliometrics, scientometrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
1743 Malicious Vehicle Detection Using Monitoring Algorithm in Vehicular Adhoc Networks

Authors: S. Padmapriya

Abstract:

Vehicular Adhoc Networks (VANETs), a subset of Mobile Adhoc Networks (MANETs), refers to a set of smart vehicles used for road safety. This vehicle provides communication services among one another or with the Road Side Unit (RSU). Security is one of the most critical issues related to VANET as the information transmitted is distributed in an open access environment. As each vehicle is not a source of all messages, most of the communication depends on the information received from other vehicles. To protect VANET from malicious action, each vehicle must be able to evaluate, decide and react locally on the information received from other vehicles. Therefore, message verification is more challenging in VANET because of the security and privacy concerns of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.

Keywords: VANET, security, malicious vehicle detection, threshold value, distrust value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
1742 Modeling Low Voltage Power Line as a Data Communication Channel

Authors: Eklas Hossain, Sheroz Khan, Ahad Ali

Abstract:

Power line communications may be used as a data communication channel in public and indoor distribution networks so that it does not require the installing of new cables. Industrial low voltage distribution network may be utilized for data transfer required by the on-line condition monitoring of electric motors. This paper presents a pilot distribution network for modeling low voltage power line as data transfer channel. The signal attenuation in communication channels in the pilot environment is presented and the analysis is done by varying the corresponding parameters for the signal attenuation.

Keywords: Data communication, indoor distribution networks, low voltage, power line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286
1741 Corporate Governance Networks and Interlocking Directorates in the Czech Republic

Authors: Ondřej Nowak

Abstract:

This paper presents an exploration into the structure of the corporate governance network and interlocking directorates in the Czech Republic. First a literature overview and a basic terminology of the network theory is presented. Further in the text, statistics and other calculations relevant to corporate governance networks are presented. For this purpose an empirical data set consisting of 2 906 joint stock companies in the Czech Republic was examined. Industries with the highest average number of interlocks per company were healthcare, and energy and utilities. There is no observable link between the financial performance of the company and the number of its interlocks. Also interlocks with financial companies are very rare.

Keywords: Corporate Governance, Interlocking Directorates, Network Theory, Czech Republic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1740 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1739 Effects of Tap Changing Transformer and Shunt Capacitor on Voltage Stability Enhancement of Transmission Networks

Authors: Pyone Lai Swe, Wanna Swe, Kyaw Myo Lin

Abstract:

Voltage stability has become an important issue to many power systems around the world due to the weak systems and long line on power system networks. In this paper, MATLAB load flow program is applied to obtain the weak points in the system combined with finding the voltage stability limit. The maximum permissible loading of a system, within the voltage stability limit, is usually determined. The methods for varying tap ratio (using tap changing transformer) and applying different values of shunt capacitor injection to improve the voltage stability within the limit are also provided.

Keywords: Load flow, Voltage stability, Tap changingtransformer, Shunt capacitor injection, Voltage stability limit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5979
1738 Multiple Input Multiple Output Detection Using Roulette Wheel Based Ant Colony Optimization Technique

Authors: B. Rebekka, B. Malarkodi

Abstract:

This paper describes an approach to detect the transmitted signals for 2×2 Multiple Input Multiple Output (MIMO) setup using roulette wheel based ant colony optimization technique. The results obtained are compared with classical zero forcing and least mean square techniques. The detection rates achieved using this technique are consistently larger than the one achieved using classical methods for 50 number of attempts with two different antennas transmitting the input stream from a user. This paves the path to use alternative techniques to improve the throughput achieved in advanced networks like Long Term Evolution (LTE) networks.

Keywords: MIMO, ant colony optimization, roulette wheel, soft computing, LTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
1737 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)

Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat

Abstract:

An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.

Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1736 Wavelet-Based Spectrum Sensing for Cognitive Radios using Hilbert Transform

Authors: Shiann-Shiun Jeng, Jia-Ming Chen, Hong-Zong Lin, Chen-Wan Tsung

Abstract:

For cognitive radio networks, there is a major spectrum sensing problem, i.e. dynamic spectrum management. It is an important issue to sense and identify the spectrum holes in cognitive radio networks. The first-order derivative scheme is usually used to detect the edge of the spectrum. In this paper, a novel spectrum sensing technique for cognitive radio is presented. The proposed algorithm offers efficient edge detection. Then, simulation results show the performance of the first-order derivative scheme and the proposed scheme and depict that the proposed scheme obtains better performance than does the first-order derivative scheme.

Keywords: cognitive radio, Spectrum Sensing, wavelet, edgedetection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
1735 The Effectiveness of Mineral Fertilization of Winter Wheat by Nitrogen in the Soil and Climatic Conditions in the Cr

Authors: Václav Voltr, Jan Leština

Abstract:

The basis of examines is survey of 500 in the years 2002-2010, which was selected according to homogeneity of land cover and where 1090 revenues were evaluated. For achieved yields of winter wheat is obtained multicriterial regression function depending on the major factors influencing the consumption of nitrogen. The coefficient of discrimination of the established model is 0.722. The increase in efficiency of fertilization is involved in supply of organic nutrients, tillage, soil pH, past weather, the humus content in the subsoil and grain content to 0.001 mm. The decrease in efficiency was mainly influenced by the total dose of mineral nitrogen, although it was divided into multiple doses, the proportion loamy particles up to 0.01 mm, rainy, or conversely dry weather during the vegetation. The efficiency of nitrogen was found to be the smallest on undeveloped soils and the highest on chernozem and alluvial soils.

Keywords: Nitrogen efficiency, winter wheat, regression model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1734 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
1733 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent

Authors: Ali Ghiaseddin , Akram Nemati

Abstract:

In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.

Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1732 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method

Authors: S. Qaedi, S. Seyedtabaii

Abstract:

Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.

Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
1731 A Cross-Layer Approach for Cooperative MIMO Multi-hop Wireless Sensor Networks

Authors: Jain-Shing Liu

Abstract:

In this work, we study the problem of determining the minimum scheduling length that can satisfy end-to-end (ETE) traffic demand in scheduling-based multihop WSNs with cooperative multiple-input multiple-output (MIMO) transmission scheme. Specifically, we present a cross-layer formulation for the joint routing, scheduling and stream control problem by incorporating various power and rate adaptation schemes, and taking into account an antenna beam pattern model and the signal-to-interference-and-noise (SINR) constraint at the receiver. In the context, we also propose column generation (CG) solutions to get rid of the complexity requiring the enumeration of all possible sets of scheduling links.

Keywords: Wireless Sensor Networks, Cross-Layer Design, CooperativeMIMO System, Column Generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1730 Increasing Lifetime of Target Tracking Wireless Sensor Networks

Authors: Khin Thanda Soe

Abstract:

A model to identify the lifetime of target tracking wireless sensor network is proposed. The model is a static clusterbased architecture and aims to provide two factors. First, it is to increase the lifetime of target tracking wireless sensor network. Secondly, it is to enable good localization result with low energy consumption for each sensor in the network. The model consists of heterogeneous sensors and each sensing member node in a cluster uses two operation modes–active mode and sleep mode. The performance results illustrate that the proposed architecture consumes less energy and increases lifetime than centralized and dynamic clustering architectures, for target tracking sensor network.

Keywords: Network lifetime, Target Localization, TargetTracking, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
1729 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
1728 Stabilizing Voltage for Sheens with Motor Loading due to Starting Inductive Motor by using STATCOM

Authors: Mohammad Reza Askari, Mohsen Kazemi, Ali Asghar Baziar

Abstract:

In this treatise we will study the capability of static compensator for reactive power to stabilize sheen voltage with motor loading on power networks system. We also explain the structure and main function of STATCOM and the method to control it using STATCOM transformer current to simultaneously predict after telling about the necessity of FACTS tools to compensate in power networks. Then we study topology and controlling system to stabilize voltage during start of inductive motor. The outcome of stimulat by MATLAB software supports presented controlling idea and system in the treatise.

Keywords: Power network, inductive motor, reactive power, stability of voltage, STATCOM, FACTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1727 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574