Search results for: Distributed query processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2511

Search results for: Distributed query processing

861 A Novel Fuzzy Technique for Image Noise Reduction

Authors: Hamed Vahdat Nejad, Hameed Reza Pourreza, Hasan Ebrahimi

Abstract:

A new fuzzy filter is presented for noise reduction of images corrupted with additive noise. The filter consists of two stages. In the first stage, all the pixels of image are processed for determining noisy pixels. For this, a fuzzy rule based system associates a degree to each pixel. The degree of a pixel is a real number in the range [0,1], which denotes a probability that the pixel is not considered as a noisy pixel. In the second stage, another fuzzy rule based system is employed. It uses the output of the previous fuzzy system to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Experimental results are obtained to show the feasibility of the proposed filter. These results are also compared to other filters by numerical measure and visual inspection.

Keywords: Additive noise, Fuzzy logic, Image processing, Noise reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
860 Variance Based Component Analysis for Texture Segmentation

Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei

Abstract:

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Keywords: Principal Component Analysis; Variance Based Component Analysis; Defect Detection; Texture Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
859 Generic Filtering of Infinite Sets of Stochastic Signals

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: Optimal filtering, data compression, stochastic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
858 Performance Analysis of MT Evaluation Measures and Test Suites

Authors: Yao Jian-Min, Lv Qiang, Zhang Jing

Abstract:

Many measures have been proposed for machine translation evaluation (MTE) while little research has been done on the performance of MTE methods. This paper is an effort for MTE performance analysis. A general frame is proposed for the description of the MTE measure and the test suite, including whether the automatic measure is consistent with human evaluation, whether different results from various measures or test suites are consistent, whether the content of the test suite is suitable for performance evaluation, the degree of difficulty of the test suite and its influence on the MTE, the relationship of MTE result significance and the size of the test suite, etc. For a better clarification of the frame, several experiment results are analyzed relating human evaluation, BLEU evaluation, and typological MTE. A visualization method is introduced for better presentation of the results. The study aims for aid in construction of test suite and method selection in MTE practice.

Keywords: Machine translation, natural language processing, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
857 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation

Authors: Noura Al-Ajmi, Mohammed A. Almulla

Abstract:

With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.

Keywords: Headache diagnosis system, treatment recommender system, rule-based expert system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
856 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana

Abstract:

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop

Keywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
855 Identification of Wideband Sources Using Higher Order Statistics in Noisy Environment

Authors: S. Bourennane, A. Bendjama

Abstract:

This paper deals with the localization of the wideband sources. We develop a new approach for estimating the wide band sources parameters. This method is based on the high order statistics of the recorded data in order to eliminate the Gaussian components from the signals received on the various hydrophones.In fact the noise of sea bottom is regarded as being Gaussian. Thanks to the coherent signal subspace algorithm based on the cumulant matrix of the received data instead of the cross-spectral matrix the wideband correlated sources are perfectly located in the very noisy environment. We demonstrate the performance of the proposed algorithm on the real data recorded during an underwater acoustics experiments.

Keywords: Higher-order statistics, high resolution array processing techniques, localization of acoustics sources, wide band sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
854 Microwave Pretreatment of Seeds to Extract High Quality Vegetable Oil

Authors: S. Azadmard-Damirchi, K. Alirezalu, B. Fathi Achachlouei

Abstract:

Microwave energy is a superior alternative to several other thermal treatments. Extraction techniques are widely employed for the isolation of bioactive compounds and vegetable oils from oil seeds. Among the different and new available techniques, microwave pretreatment of seeds is a simple and desirable method for production of high quality vegetable oils. Microwave pretreatment for oil extraction has many advantages as follow: improving oil extraction yield and quality, direct extraction capability, lower energy consumption, faster processing time and reduced solvent levels compared with conventional methods. It allows also for better retention and availability of desirable nutraceuticals, such as phytosterols and tocopherols, canolol and phenolic compounds in the extracted oil such as rapeseed oil. This can be a new step to produce nutritional vegetable oils with improved shelf life because of high antioxidant content.

Keywords: Microwave pretreatment, vegetable oil extraction, nutraceuticals, oil quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4911
853 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation

Authors: O. Maklouf, Ahmed Abdulla

Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Keywords: GPS, ParIMU, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
852 Parallel Text Processing: Alignment of Indonesian to Javanese Language

Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy

Abstract:

Parallel text alignment is proposed as a way of aligning bahasa Indonesia to words in Javanese. Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Keywords: Parallel text alignment, phrase pair combination, edit distance coefficient, Javanese-Indonesian language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
851 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
850 Experimental Study on Dehumidification Performance of Supersonic Nozzle

Authors: Esam Jassim

Abstract:

Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.

Keywords: Supersonic nozzle, dehumidification, particle separation, geometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
849 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41
848 Studies on Distortion of Dissimilar Thin Sheet Weld Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

To achieve reliable welds with minimum distortion for the fabrication of components in aerospace industry laser beam welding is attempted. Laser welding can provide a significant benefit for the welding of Titanium and Aluminium thin sheet alloys of its precision and rapid processing capability. For laser welding, pulse shape, energy, duration, repetition rate and peak power are the most important parameters that influence directly the quality of welds. In this experimental work for joining 1mm thick TI6AL4V and AA2024 alloy and JK600 Nd:YAG pulsed laser units used. The distortions at different welding power and speed of titanium and aluminium thin sheet alloys are investigated. Test results reveal that increase in welding speed increases distortion in weldment

Keywords: Laser Beam Welding, Titanium, Aluminium alloy sheets and distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
847 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
846 Video-Based Tracking of Laparoscopic Instruments Using an Orthogonal Webcams System

Authors: Fernando Pérez, Humberto Sossa, Rigoberto Martínez, Daniel Lorias, Arturo Minor

Abstract:

This paper presents a system for tracking the movement of laparoscopic instruments which is based on an orthogonal system of webcams and video image processing. The movements are captured with two webcams placed orthogonally inside of the physical trainer. On the image, the instruments were detected by using color markers placed on the distal tip of each instrument. The 3D position of the tip of the instrument within the work space was obtained by linear triangulation method. Preliminary results showed linearity and repeatability in the motion tracking with a resolution of 0.616 mm in each axis; the accuracy of the system showed a 3D instrument positioning error of 1.009 ± 0.101 mm. This tool is a portable and low-cost alternative to traditional tracking devices and a trustable method for the objective evaluation of the surgeon’s surgical skills.

Keywords: Laparoscopic Surgery, Orthogonal Vision, Tracking Instruments, Triangulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
845 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Authors: L. Ramirez, E. Guillén, J. Sánchez

Abstract:

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Keywords: Analytics, telemedicine, internet of things, cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
844 A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information

Authors: Ali Shariq Imran, M. Younus Javed, Naveed Sarfraz Khattak

Abstract:

This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.

Keywords: Data hiding, image processing, information security, stagonography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
843 Detection and Pose Estimation of People in Images

Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi

Abstract:

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.

Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
842 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
841 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3644
840 A Novel Implementation of Application Specific Instruction-set Processor (ASIP) using Verilog

Authors: Kamaraju.M, Lal Kishore.K, Tilak.A.V.N

Abstract:

The general purpose processors that are used in embedded systems must support constraints like execution time, power consumption, code size and so on. On the other hand an Application Specific Instruction-set Processor (ASIP) has advantages in terms of power consumption, performance and flexibility. In this paper, a 16-bit Application Specific Instruction-set processor for the sensor data transfer is proposed. The designed processor architecture consists of on-chip transmitter and receiver modules along with the processing and controlling units to enable the data transmission and reception on a single die. The data transfer is accomplished with less number of instructions as compared with the general purpose processor. The ASIP core operates at a maximum clock frequency of 1.132GHz with a delay of 0.883ns and consumes 569.63mW power at an operating voltage of 1.2V. The ASIP is implemented in Verilog HDL using the Xilinx platform on Virtex4.

Keywords: ASIP, Data transfer, Instruction set, Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
839 Audio Watermarking Using Spectral Modifications

Authors: Jyotsna Singh, Parul Garg, Alok Nath De

Abstract:

In this paper, we present a non-blind technique of adding the watermark to the Fourier spectral components of audio signal in a way such that the modified amplitude does not exceed the maximum amplitude spread (MAS). This MAS is due to individual Discrete fourier transform (DFT) coefficients in that particular frame, which is derived from the Energy Spreading function given by Schroeder. Using this technique one can store double the information within a given frame length i.e. overriding the watermark on the host of equal length with least perceptual distortion. The watermark is uniformly floating on the DFT components of original signal. This helps in detecting any intentional manipulations done on the watermarked audio. Also, the scheme is found robust to various signal processing attacks like presence of multiple watermarks, Additive white gaussian noise (AWGN) and mp3 compression.

Keywords: Discrete Fourier Transform, Spreading Function, Watermark, Pseudo Noise Sequence, Spectral Masking Effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
838 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: Decision making, Markov chain, optimization, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
837 Awareness of Value Addition of Sweet Potato (Ipomoea batatas (L.) Lam) In Osun State, Nigeria

Authors: A. M. Omoare, E. O. Fakoya, O. E. Fapojuwo, W. O. Oyediran

Abstract:

Awareness of value addition of sweet potato has received comparatively little attention in Nigeria despite its potential to reduce perishability and enhanced utilization of the crop in diverse products forms. This study assessed the awareness of value addition of sweet potato in Osun State, Nigeria. Multi-stage random sampling technique was used to select 120 respondents for the study. Data obtained were analyzed using descriptive statistics and multiple regression analysis. Findings showed that most (75.00%) of the respondents were male with mean age of 42.10 years and 96.70% of the respondents had formal education. The mean farm size was 2.30 hectares. Majority (75.00%) of the respondents had more than 10 years farming experience. Awareness of value addition of sweet potato was very low among the respondents. It was recommended that sweet potato farmers should be empowered through effective and efficient extension training on the use of modern processing techniques in order to enhance value addition of sweet potato. 

Keywords: Awareness, value addition, sweet potato, perishability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
836 Perceived Risks in Business-to-Consumer Online Contracts: An Empirical Study in Saudi Arabia

Authors: Shaya Alshahrani

Abstract:

Perceived risks play a major role in consumer intentions, behaviors, attitudes, and decisions about online shopping in the KSA. This paper investigates the influence of six perceived risk dimensions on Saudi consumers: product risk, information risk, financial risk, privacy and security risk, delivery risk, and terms and conditions risk empirically. To ensure the success of this study, a random survey was distributed to reflect the consumers’ perceived risk and to enable the generalization of the results. Data were collected from 323 respondents in the Kingdom of Saudi Arabia (KSA): 50 who had never shopped online and 273 who had done so. The results indicated that all six risks influenced the respondents’ perceptions of online shopping. The non-online shoppers perceived financial and delivery risks as the most significant barriers to online shopping. This was followed closely by performance, information, and privacy and security risks. Terms and conditions were perceived as less significant. The online consumers considered delivery and performance risks to be the most significant influences on internet shopping. This was followed closely by information and terms and conditions. Financial and privacy and security risks were perceived as less significant. This paper argues that introducing adequate legal solutions to addressing related problems arising from this study is an urgent need. This may enhance consumer trust in the KSA online market, increase consumers’ intentions regarding online shopping, and improve consumer protection.

Keywords: Perceived risk, consumer protection, online shopping, Saudi Arabia, online contracts, e-commerce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
835 Sensory Evaluation of Cooked Sausages with Legumes Additive

Authors: Ilze Gramatina, Jelena Zagorska, Evita Straumite, Svetlana Sarvi

Abstract:

In the meat processing industry the substitution of meat with non-meat ingredients is considered an important strategy for reducing overall production costs. The main purpose of the current research was to evaluate differences in physical-chemical composition of cooked sausage with different legumes additions. Peas (Pisum sativum), beans (Phaseolus vulgaris) and lentil (Lens culinaris) were used in preparation of sausages. The legumes at proportion of 20% of the total weight of meat were added in sausages. The whole ingredients were mixed, filled into casing, compressed, cooked and cooled. After storage the samples were sensory evaluated. The sensory evaluation was carried out using the nine point hedonic scale and line scale. Sausages without legumes flour was used as control sample. The main conclusion of the current research the legumes flour can be successfully used for cooked sausages production.

Keywords: Legumes, cooked sausages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
834 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

Authors: A. Javed, K. Djidjeli, J. T. Xing

Abstract:

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.

Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
833 Word Recognition and Learning based on Associative Memories and Hidden Markov Models

Authors: Zöhre Kara Kayikci, Günther Palm

Abstract:

A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".

Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
832 Speech Enhancement of Vowels Based on Pitch and Formant Frequency

Authors: R. Rishma Rodrigo, R. Radhika, M. Vanitha Lakshmi

Abstract:

Numerous signal processing based speech enhancement systems have been proposed to improve intelligibility in the presence of noise. Traditionally, studies of neural vowel encoding have focused on the representation of formants (peaks in vowel spectra) in the discharge patterns of the population of auditory-nerve (AN) fibers. A method is presented for recording high-frequency speech components into a low-frequency region, to increase audibility for hearing loss listeners. The purpose of the paper is to enhance the formant of the speech based on the Kaiser window. The pitch and formant of the signal is based on the auto correlation, zero crossing and magnitude difference function. The formant enhancement stage aims to restore the representation of formants at the level of the midbrain. A MATLAB software’s are used for the implementation of the system with low complexity is developed.

Keywords: Formant estimation, formant enhancement, pitch detection, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641