Search results for: Pressure path
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1867

Search results for: Pressure path

247 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube

Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi

Abstract:

In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.

Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
246 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia

Abstract:

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration design and inner instrument layout of the Mars entry capsule.

Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
245 Limestone Briquette Production and Characterization

Authors: André C. Silva, Mariana R. Barros, Elenice M. S. Silva, Douglas. Y. Marinho, Diego F. Lopes, Débora N. Sousa, Raphael S. Tomáz

Abstract:

Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction.

Keywords: Agglomeration, briquetting, limestone, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
244 Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device

Authors: Terrance Charles, Zhiyin Yang, Yiling Lu

Abstract:

Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.

Keywords: Aerodynamic drag, cross vortex trap device, truck, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
243 The Impact of Supply Chain Strategy and Integration on Supply Chain Performance: Supply Chain Vulnerability as a Moderator

Authors: Yi-Chun Kuo, Jo-Chieh Lin

Abstract:

The objective of a supply chain strategy is to reduce waste and increase efficiency to attain cost benefits, and to guarantee supply chain flexibility when facing the ever-changing market environment in order to meet customer requirements. Strategy implementation aims to fulfill common goals and attain benefits by integrating upstream and downstream enterprises, sharing information, conducting common planning, and taking part in decision making, so as to enhance the overall performance of the supply chain. With the rise of outsourcing and globalization, the increasing dependence on suppliers and customers and the rapid development of information technology, the complexity and uncertainty of the supply chain have intensified, and supply chain vulnerability has surged, resulting in adverse effects on supply chain performance. Thus, this study aims to use supply chain vulnerability as a moderating variable and apply structural equation modeling (SEM) to determine the relationships among supply chain strategy, supply chain integration, and supply chain performance, as well as the moderating effect of supply chain vulnerability on supply chain performance. The data investigation of this study was questionnaires which were collected from the management level of enterprises in Taiwan and China, 149 questionnaires were received. The result of confirmatory factor analysis shows that the path coefficients of supply chain strategy on supply chain integration and supply chain performance are positive (0.497, t= 4.914; 0.748, t= 5.919), having a significantly positive effect. Supply chain integration is also significantly positively correlated to supply chain performance (0.192, t = 2.273). The moderating effects of supply chain vulnerability on supply chain strategy and supply chain integration to supply chain performance are significant (7.407; 4.687). In Taiwan, 97.73% of enterprises are small- and medium-sized enterprises (SMEs) focusing on receiving original equipment manufacturer (OEM) and original design manufacturer (ODM) orders. In order to meet the needs of customers and to respond to market changes, these enterprises especially focus on supply chain flexibility and their integration with the upstream and downstream enterprises. According to the observation of this research, the effect of supply chain vulnerability on supply chain performance is significant, and so enterprises need to attach great importance to the management of supply chain risk and conduct risk analysis on their suppliers in order to formulate response strategies when facing emergency situations. At the same time, risk management is incorporated into the supply chain so as to reduce the effect of supply chain vulnerability on the overall supply chain performance.

Keywords: Supply chain integration, supply chain performance, supply chain vulnerability, structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
242 Assessment of Tourist and Community Perception with Regard to Tourism Sustainability Indicators: A Case Study of Sinharaja World Heritage Rainforest, Sri Lanka

Authors: L. P. K. Liyanage, N. R. P. Withana, A. L. Sandika

Abstract:

The purpose of this study was to determine tourist and community perception-based sustainable tourism indicators as well as Human Pressure Index (HPI) and Tourist Activity Index (TAI). Study was carried out in Sinharaja forest which is considered as one of the major eco-tourism destination in Sri Lanka. Data were gathered using a pre-tested semi-structured questionnaire as well as records from Forest department. Convenient sampling technique was applied. For the majority of issues, the responses were obtained on multi-point Likert-type scales. Visual portrayal was used for display analyzed data. The study revealed that the host community of the Kudawa gets many benefits from tourism. Also, tourism has caused negative impacts upon the environment and community. The study further revealed the need of proper waste management and involvement of local cultural events for the tourism business in the Kudawa conservation center. The TAI, which accounted to be 1.27 and monthly evolution of HPI revealed that congestion can be occurred in the Sinharaja rainforest during peak season. The results provide useful information to any party involved with tourism planning anywhere, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.

Keywords: Kudawa conservation center, Sinharaja world heritage rainforest, sustainability indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
241 A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool

Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi

Abstract:

Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness. These parameters include the lubrication pressure, spindle speed, feed rate and depth of cut. In this research work, a fuzzy logic model is offered to predict the surface roughness of a machined surface in glass milling operation using CBN grinding tool. Four membership functions are allocated to be connected with each input of the model. The predicted results achieved via fuzzy logic model are compared to the experimental result. The result demonstrated settlement between the fuzzy model and experimental results with the 93.103% accuracy.

Keywords: CNC-machine, Glass milling, Grinding, Surface roughness, Cutting force, Fuzzy logic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
240 Ranking of Inventory Policies Using Distance Based Approach Method

Authors: Gupta Amit, Kumar Ramesh, Tewari P. C.

Abstract:

Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies economic order quantity (EOQ), just in time (JIT), vendor managed inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.

Keywords: Inventory Policy, Ranking, DBA, Selection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
239 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: Debye length, double layer polarization, electrophoresis, mobility reversal, soft particle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
238 A Comparative Study on the Performance of Viscous and Friction Dampers under Seismic Excitation

Authors: Apetsi K. Ampiah, Zhao Xin

Abstract:

Earthquakes over the years have been known to cause devastating damage on buildings and induced huge loss on human life and properties. It is for this reason that engineers have devised means of protecting buildings and thus protecting human life. Since the invention of devices such as the viscous and friction dampers, scientists/researchers have been able to incorporate these devices into buildings and other engineering structures. The viscous damper is a hydraulic device which dissipates the seismic forces by pushing fluid through an orifice, producing a damping pressure which creates a force. In the friction damper, the force is mainly resisted by converting the kinetic energy into heat by friction. Devices such as viscous and friction dampers are able to absorb almost all the earthquake energy, allowing the structure to remain undamaged (or with some amount of damage) and ready for immediate reuse (with some repair works). Comparing these two devices presents the engineer with adequate information on the merits and demerits of these devices and in which circumstances their use would be highly favorable. This paper examines the performance of both viscous and friction dampers under different ground motions. A two-storey frame installed with both devices under investigation are modeled in commercial computer software and analyzed under different ground motions. The results of the performance of the structure are then tabulated and compared. Also included in this study is the ease of installation and maintenance of these devices.

Keywords: Friction damper, seismic, slip load, viscous damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
237 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.

Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
236 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
235 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364
234 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
233 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: Shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
232 Educational Path for Pedagogical Skills: A Football School Experience

Authors: A. Giani

Abstract:

The current pedagogical culture recognizes an educational scope within the sports practices. It is widely accepted, in the pedagogical culture, that thanks to the acquisition and development of motor skills, it is also possible to exercise abilities that concern the way of facing and managing the difficulties of everyday life. Sport is a peculiar educational environment: the children have the opportunity to discover the possibilities of their body, to correlate with their peers, and to learn how to manage the rules and the relationship with authorities, such as coaches. Educational aspects of the sport concern both non-formal and formal educational environments. Coaches play a critical role in an agonistic sphere: exactly like the competencies developed by the children, coaches have to work on their skills to properly set up the educational scene. Facing these new educational tasks - which are not new per se, but new because they are brought back to awareness - a few questions arise: does the coach have adequate preparation? Is the training of the coach in this specific area appropriate? This contribution aims to explore the issue in depth by focusing on the reality of the Football School. Starting from a possible sense of pedagogical inadequacy detected during a series of meetings with several football clubs in Piedmont (Italy), there have been highlighted some important educational needs within the professional training of sports coaches. It is indeed necessary for the coach to know the processes underlying the educational relationship in order to better understand the centrality of the assessment during the educational intervention and to be able to manage the asymmetry in the coach-athlete relationship. In order to provide a response to these pedagogical needs, a formative plan has been designed to allow both an in-depth study of educational issues and a correct self-evaluation of certain pedagogical skills’ control levels, led by the coach. This plan has been based on particular practices, the Educational Practices of Pre-test (EPP), a specific version of community practices designed for the extracurricular activities. The above-mentioned practices realized through the use of texts meant as pre-tests, promoted a reflection within the group of coaches: they set up real and plausible sports experiences - in particular football, triggering a reflection about the relationship’s object, spaces, and methods. The characteristic aspect of pre-tests is that it is impossible to anticipate the reflection as it is necessarily connected to the personal experience and sensitivity, requiring a strong interest and involvement by participants: situations must be considered by the coaches as possible settings in which they could be found on the field.

Keywords: Relational needs, responsibility, self-evaluation, values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
231 Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally

Authors: Mahdi Hamzehei

Abstract:

In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.

Keywords: Gas-solid flows, fluidized bed, Hydrodynamics, Heat transfer, Turbulence model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
230 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
229 Flow-Through Supercritical Installation for Producing Biodiesel Fuel

Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin

Abstract:

A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.

Keywords: Biodiesel, fatty acid esters, supercritical fluid technology, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 400
228 Investigation of Thermal and Mechanical Loading on Functional Graded Material Plates

Authors: Mine Uslu Uysal

Abstract:

This paper interested in the mechanical deformation behavior of shear deformable functionally graded ceramic-metal (FGM) plates. Theoretical formulations are based on power law theory when build up functional graded material. The mechanical properties of the plate are graded in the thickness direction according to a power-law Displacement and stress is obtained using finite element method (FEM). The load is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of thermo-mechanical deformation behavior. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to r structural problems. FGMs are first characterized as flat plates under pressure in order to understand the effect variation of material properties has on structural response. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software.

Keywords: Functionally graded material, finite element method, thermal and structural loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
227 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
226 Numerical Simulation of Tidal Currents in Persian Gulf

Authors: Ameleh Aghajanloo, Moharam Dolatshahi Pirouz, Masoud Montazeri Namin

Abstract:

In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.

Keywords: Persian Gulf, Tidal Currents, Shallow Water Equations, Finite Volumes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
225 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments

Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui

Abstract:

Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.

Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
224 Physical Exercise Intervention on Hypertension Patients

Authors: Ling-Lih Shen, Feng-Chuan Pan

Abstract:

Chronic diseases prevailed along with economic growth as well as life style changed in recent years in Taiwan. According to the governmental statistics, hypertension related disease is the tenth of death causes with 1,816 died directly from hypertension in 2010. There were more death causes amongst the top ten had been proofed that having strong association with the hypertension, such as heart diseases, cardiovascular diseases, and diabetes. Hypertension or High blood pressure is one of the major indicators for chronic diseases, and was generally perceived as the major causes of mortality. The literature generally suggested that regular physical exercise was helpful to prevent the occurrence or to ease the progress of a hypertension. This paper reported the process and outcomes in detailed of an improvement project of physical exercise intervention specific for hypertension patients. Physical information were measured before and after the project to obtain information such as weight, waistline, cholesterol (HD & LD), blood examination, as well as self-perceived health status. The intervention project involved a six-week exercise program, of which contained three times a week, 30 minutes of tutored physical exercise intervention. The project had achieved several gains in changing the subjects- behavior in terms of many important biophysical indexes. Around 20% of the participants had significantly improved their cholesterols, BMI, and changed unhealthy behaviors. Results from the project were encouraging, and would be good reference for other samples.

Keywords: Intervention, biological information, hypertension patients, behavioral changes, chronic disease

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
223 Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic

Authors: C. Nutphuang, S. Chirarattananon, V.D. Hien

Abstract:

In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.

Keywords: CFD program, natural ventilation, forcedconvection, heat transfer, air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
222 Construction Noise Management: Hong Kong Reviews and International Best Practices

Authors: Morgan Cheng, Wilson Ho, Max Yiu, Dragon Tsui, Wylog Wong, Yasir A. Naveed, C. S. Loong, Richard Kwan, K. C. Lam, Hannah Lo, C. L. Wong

Abstract:

Hong Kong is known worldwide for high density living and the ability to thrive under trying circumstances. The 7.5 million residents of this busy metropolis live primarily in high-rise buildings which are built and demolished incessantly. Hong Kong residents are therefore affected continuously by numerous construction activities. In 2020, the Hong Kong Environmental Protection Department (EPD) commissioned a feasibility study on the management of construction noise, including those associated with renovation of domestic premises. A key component of the study focused on the review of practices concerning the management and control of construction noise in metropolitans in other parts of the world. To benefit from international best practices, this extensive review aimed at identifying possible areas of improvement in Hong Kong. The study first referred to the United Nations “The World’s Cities in 2016” Report and examined the top 100 cities therein. The 20 most suitable cities were then chosen for further review. Upon further screening, 12 cities with more relevant management practices were selected for further scrutiny. These 12 cities include: Asia – Tokyo, Seoul, Taipei, Guangzhou, Singapore; Europe – City of Westminster (London), Berlin; North America – Toronto, New York City, San Francisco; Oceania – Sydney, Melbourne. Subsequently, three cities, namely Sydney, City of Westminster, and New York City, were selected for in-depth review. These three were chosen primarily because of the maturity, success, and effectiveness of their construction noise management and control measures, as well as their similarity to Hong Kong in certain key aspects. One of the more important findings of the review is the importance of early focus on potential noise issues, with the objective of designing the noise away wherever practicable. The study examined the similar yet different construction noise early focus mechanisms of these three cities. This paper describes this landmark, worldwide and extensive review on international best construction noise management and control practices at the source, along the noise transmission path and at the receiver end. The methodology, approach, and key findings are presented succinctly in this paper. By sharing the findings with the acoustics professionals worldwide, it is hoped that more advanced and mature construction noise management practices can be developed to attain urban sustainability.

Keywords: construction noise, international best practices, noise control and noise management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534
221 Directional Drilling Optimization by Non-Rotating Stabilizer

Authors: Eisa Noveiri, Adel Taheri Nia

Abstract:

The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.

Keywords: non-rotating, Adjustable stabilizer, simulator, Directional Drilling, optimization, Oil Well Drilling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3269
220 Failure Analysis of Methanol Evaporator

Authors: D. Sufi Ahmadi, B. Bagheri

Abstract:

Thermal water hammer is a special type of water hammer which rarely occurs in heat exchangers. In biphasic fluids, if steam bubbles are surrounded by condensate, regarding lower condensate temperature than steam, they will suddenly collapse. As a result, the vacuum caused by an extreme change in volume lead to movement of the condensates in all directions and their collision the force produced by this collision leads to a severe stress in the pipe wall. This phenomenon is a special type of water hammer. According to fluid mechanics, this phenomenon is a particular type of transient flows during which abrupt change of fluid leads to sudden pressure change inside the tube. In this paper, the mechanism of abrupt failure of 80 tubes of 481 tubes of a methanol heat exchanger is discussed. Initially, due to excessive temperature differences between heat transfer fluids and simultaneous failure of 80 tubes, thermal shock was presupposed as the reason of failure. Deeper investigation on cross-section of failed tubes showed that failure was, ductile type of failure, so the first hypothesis was rejected. Further analysis and more accurate experiments revealed that failure of tubes caused by thermal water hammer. Finally, the causes of thermal water hammer and various solutions to avoid such mechanism are discussed.

Keywords: Thermal water hammer, Brittle Failure, Condensate thermal shock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
219 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
218 GC and GCxGC-MS Composition of Volatile Compounds from Carum carvi by Using Techniques Assisted by Microwaves

Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe

Abstract:

The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.

Keywords: Microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028