Search results for: image enhancement.
387 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time
Authors: Francisco Bulnes
Abstract:
Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, spectrum of ring, topological quantum diffeomorphisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012386 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites
Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu
Abstract:
Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.
Keywords: Textile reinforced composite, cement, fine grained concrete, latex, redispersible powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929385 A Review in Advanced Digital Signal Processing Systems
Authors: Roza Dastres, Mohsen Soori
Abstract:
Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060384 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377383 Deterministic Random Number Generators for Online Applications
Authors: Natarajan Vijayarangan, Prasanna S. Bidare
Abstract:
Cryptography, Image watermarking and E-banking are filled with apparent oxymora and paradoxes. Random sequences are used as keys to encrypt information to be used as watermark during embedding the watermark and also to extract the watermark during detection. Also, the keys are very much utilized for 24x7x365 banking operations. Therefore a deterministic random sequence is very much useful for online applications. In order to obtain the same random sequence, we need to supply the same seed to the generator. Many researchers have used Deterministic Random Number Generators (DRNGs) for cryptographic applications and Pseudo Noise Random sequences (PNs) for watermarking. Even though, there are some weaknesses in PN due to attacks, the research community used it mostly in digital watermarking. On the other hand, DRNGs have not been widely used in online watermarking due to its computational complexity and non-robustness. Therefore, we have invented a new design of generating DRNG using Pi-series to make it useful for online Cryptographic, Digital watermarking and Banking applications.
Keywords: E-tokens, LFSR, non-linear, Pi series, pseudo random number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013382 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.
Keywords: Camera-based OCR, Feature extraction, Document and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473381 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.
Keywords: Cardiac MRI, Graph searching, Left ventricle segmentation, K-means clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098380 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923379 Evaluation of Handover Latency in Intra- Domain Mobility
Authors: Aisha Hassan Abdalla Hashim, Fauzana Ridzuan, Nazreen Rusli
Abstract:
Mobile IPv6 (MIPv6) describes how mobile node can change its point of attachment from one access router to another. As a demand for wireless mobile devices increases, many enhancements for macro-mobility (inter-domain) protocols have been proposed, designed and implemented in Mobile IPv6. Hierarchical Mobile IPv6 (HMIPv6) is one of them that is designed to reduce the amount of signaling required and to improve handover speed for mobile connections. This is achieved by introducing a new network entity called Mobility Anchor Point (MAP). This report presents a comparative study of the Hierarchical Mobility IPv6 and Mobile IPv6 protocols and we have narrowed down the scope to micro-mobility (intra-domain). The architecture and operation of each protocol is studied and they are evaluated based on the Quality of Service (QoS) parameter; handover latency. The simulation was carried out by using the Network Simulator-2. The outcome from this simulation has been discussed. From the results, it shows that, HMIPv6 performs best under intra-domain mobility compared to MIPv6. The MIPv6 suffers large handover latency. As enhancement we proposed to HMIPv6 to locate the MAP to be in the middle of the domain with respect to all Access Routers. That gives approximately same distance between MAP and Mobile Node (MN) regardless of the new location of MN, and possible shorter distance. This will reduce the delay since the distance is shorter. As a future work performance analysis is to be carried for the proposed HMIPv6 and compared to HMIPv6.
Keywords: Intra-domain mobility, HMIPv6, Handover Latency, proposed HMIPv6.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406378 Processor Scheduling on Parallel Computers
Authors: Mohammad S. Laghari, Gulzar A. Khuwaja
Abstract:
Many problems in computer vision and image processing present potential for parallel implementations through one of the three major paradigms of geometric parallelism, algorithmic parallelism and processor farming. Static process scheduling techniques are used successfully to exploit geometric and algorithmic parallelism, while dynamic process scheduling is better suited to dealing with the independent processes inherent in the process farming paradigm. This paper considers the application of parallel or multi-computers to a class of problems exhibiting spatial data characteristic of the geometric paradigm. However, by using processor farming paradigm, a dynamic scheduling technique is developed to suit the MIMD structure of the multi-computers. A hybrid scheme of scheduling is also developed and compared with the other schemes. The specific problem chosen for the investigation is the Hough transform for line detection.Keywords: Hough transforms, parallel computer, parallel paradigms, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653377 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory
Authors: Kiranmai S.Rai
Abstract:
The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3029376 Traceable Watermarking System using SoC for Digital Cinema Delivery
Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi
Abstract:
As the development of digital technology is increasing, Digital cinema is getting more spread. However, content copy and attack against the digital cinema becomes a serious problem. To solve the above security problem, we propose “Additional Watermarking" for digital cinema delivery system. With this proposed “Additional watermarking" method, we protect content copyrights at encoder and user side information at decoder. It realizes the traceability of the watermark embedded at encoder. The watermark is embedded into the random-selected frames using Hash function. Using it, the embedding position is distributed by Hash Function so that third parties do not break off the watermarking algorithm. Finally, our experimental results show that proposed method is much better than the convenient watermarking techniques in terms of robustness, image quality and its simple but unbreakable algorithm.Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip and additional watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691375 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance
Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab
Abstract:
Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.
Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10161374 DWT Based Robust Watermarking Embed Using CRC-32 Techniques
Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi
Abstract:
As far as the latest technological improvements are concerned, digital systems more become popular than the past. Despite this growing demand to the digital systems, content copy and attack against the digital cinema contents becomes a serious problem. To solve the above security problem, we propose “traceable watermarking using Hash functions for digital cinema system. Digital Cinema is a great application for traceable watermarking since it uses watermarking technology during content play as well as content transmission. The watermark is embedded into the randomly selected movie frames using CRC-32 techniques. CRC-32 is a Hash function. Using it, the embedding position is distributed by Hash Function so that any party cannot break off the watermarking or will not be able to change. Finally, our experimental results show that proposed DWT watermarking method using CRC-32 is much better than the convenient watermarking techniques in terms of robustness, image quality and its simple but unbreakable algorithm.
Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip, traceable watermark, Hash Function, CRC-32.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970373 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures
Authors: P. G. Siddheshwar, B. N. Veena
Abstract:
Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.Keywords: Enclosures, free-free, rigid-rigid and rigid-free boundaries, Ginzburg-Landau model, Lorenz model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856372 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).Keywords: Concrete jackets, steel jackets, RC buildings pushover analysis, non-linear analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782371 Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Authors: Zainab M. Almutairi, Amjad Alharbi
Abstract:
The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6369370 Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Authors: Zainab M. Almutairi, Amjad Alharbi
Abstract:
The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2636369 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain
Authors: Sergio Pissanetzky
Abstract:
The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.
Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093368 Performance Evaluation of Wavelet Based Coders on Brain MRI Volumetric Medical Datasets for Storage and Wireless Transmission
Authors: D. Dhouib, A. Naït-Ali, C. Olivier, M. S. Naceur
Abstract:
In this paper, we evaluate the performance of some wavelet based coding algorithms such as 3D QT-L, 3D SPIHT and JPEG2K. In the first step we achieve an objective comparison between three coders, namely 3D SPIHT, 3D QT-L and JPEG2K. For this purpose, eight MRI head scan test sets of 256 x 256x124 voxels have been used. Results show superior performance of 3D SPIHT algorithm, whereas 3D QT-L outperforms JPEG2K. The second step consists of evaluating the robustness of 3D SPIHT and JPEG2K coding algorithm over wireless transmission. Compressed dataset images are then transmitted over AWGN wireless channel or over Rayleigh wireless channel. Results show the superiority of JPEG2K over these two models. In fact, it has been deduced that JPEG2K is more robust regarding coding errors. Thus we may conclude the necessity of using corrector codes in order to protect the transmitted medical information.
Keywords: Image coding, medical imaging, wavelet basedcoder, wireless transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943367 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077366 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet
Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha
Abstract:
Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186365 Remote Sensing, GIS, and AHP for Assessing Physical Vulnerability to Tsunami Hazard
Authors: Abu Bakar Sambah, Fusanori Miura
Abstract:
Remote sensing image processing, spatial data analysis through GIS approach, and analytical hierarchy process were introduced in this study for assessing the vulnerability area and inundation area due to tsunami hazard in the area of Rikuzentakata, Iwate Prefecture, Japan. Appropriate input parameters were derived from GSI DEM data, ALOS AVNIR-2, and field data. We used the parameters of elevation, slope, shoreline distance, and vegetation density. Five classes of vulnerability were defined and weighted via pairwise comparison matrix. The assessment results described that 14.35km2 of the study area was under tsunami vulnerability zone. Inundation areas are those of high and slightly high vulnerability. The farthest area reached by a tsunami was about 7.50km from the shoreline and shows that rivers act as flooding strips that transport tsunami waves into the hinterland. This study can be used for determining a priority for land-use planning in the scope of tsunami hazard risk management.
Keywords: AHP, GIS, remote sensing, tsunami vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3337364 Computer Vision Applied to Flower, Fruit and Vegetable Processing
Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia
Abstract:
This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.Keywords: Image processing, Vision system, Automation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3326363 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images
Authors: A. Nachour, L. Ouzizi, Y. Aoura
Abstract:
Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.
Keywords: Edge detection, medical MR images, multi-agent systems, vector field convolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908362 Characterization and Development of Anthropomorphic Phantoms Liver for Use in Nuclear Medicine
Authors: Ferreira F. C. L., Souza D. N., Rodrigues T. M. A., Cunha C. J., Dullius M. A., Andrade J. E., Sousa A. H., Vieira J. P. C., Carvalho Júnior A. B., Santos L. P. B., Passos R. O.
Abstract:
The objective this study was to characterize and develop anthropomorphic liver phantoms in tomography hepatic procedures for quality control and improvement professionals in nuclear medicine. For the conformation of the anthropomorphic phantom was used in plaster and acrylic. We constructed three phantoms representing processes with liver cirrhosis. The phantoms were filled with 99mTc diluted with water to obtain the scintigraphic images. Tomography images were analyzed anterior and posterior phantom representing a body with a greater degree cirrhotic. It was noted that the phantoms allow the acquisition of images similar to real liver with cirrhosis. Simulations of hemangiomas may contribute to continued professional education of nuclear medicine, on the question of image acquisition, allowing of the study parameters such of the matrix, energy window and count statistics.Keywords: Nuclear medicine, liver phantom, control quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684361 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex
Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao
Abstract:
Fabric textures are very common in our daily life. However, the representation of fabric textures has never been explored from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. We choose 140 types of fabrics to get the classical fabric textures as materials. Experiment results indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.Keywords: Fabric Texture, Receptive Filed, Simple Cell, Spare Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477360 Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography
Authors: E. B. Jo, J. H. Lee, J. Y. Park, S. M. Kim
Abstract:
In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.Keywords: Mass Type Breast Cancer, Mammography, Maximum Likelihood Estimation (MLE), Ranklets, SVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994359 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images
Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge
Abstract:
Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.
Keywords: Band selection, fuzzy C-means, K-means, hyperspectral image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819358 Unsupervised Feature Selection Using Feature Density Functions
Authors: Mina Alibeigi, Sattar Hashemi, Ali Hamzeh
Abstract:
Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.Keywords: Feature, Feature Selection, Filter, Probability Density Function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083