Search results for: Triaxial MEMS force sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1629

Search results for: Triaxial MEMS force sensor

39 Problems and Prospects of Agricultural Biotechnology in Nigeria’s Developing Economy

Authors: Samson Abayomi Olasoju, Olufemi Adekunle, Titilope Edun, Johnson Owoseni

Abstract:

Science offers opportunities for revolutionizing human activities, enriched by input from scientific research and technology. Biotechnology is a major force for development in developing countries such as Nigeria. It is found to contribute to solving human problems like water and food insecurity that impede national development and threaten peace wherever it is applied. This review identified the problems of agricultural biotechnology in Nigeria. On the part of rural farmers, there is a lack of adequate knowledge or awareness of biotechnology despite the fact that they constitute the bulk of Nigerian farmers. On part of the government, the problems include: lack of adequate implementation of government policy on bio-safety and genetically modified products, inadequate funding of education as well as research and development of products related to biotechnology. Other problems include: inadequate infrastructures (including laboratory), poor funding and lack of national strategies needed for development and running of agricultural biotechnology. In spite of all the challenges associated with agricultural biotechnology, its prospects still remain great if Nigeria is to meet with the food needs of the country’s ever increasing population. The introduction of genetically engineered products will lead to the high productivity needed for commercialization and food security. Insect, virus and other related diseases resistant crops and livestock are another viable area of contribution of biotechnology to agricultural production. In conclusion, agricultural biotechnology will not only ensure food security, but, in addition, will ensure that the local farmers utilize appropriate technology needed for large production, leading to the prosperity of the farmers and national economic growth, provided government plays its role of adequate funding and good policy implementation.

Keywords: Biosafety, biotechnology, food security, genetic engineering, genetic modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
38 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.

Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
37 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Authors: K. S. Hui, K. N. Hui, Seong Kon Lee

Abstract:

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Keywords: Metal ions, waste water, methane, volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
36 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
35 A survey Method and new design Lecture Chair for Complied Ergonomics Guideline at Classroom Building 2 Suranaree University of Technology, Thailand

Authors: Sumalee B., Sirinapa L., Jenjira T., Jr., Setasak S.

Abstract:

The paper describes ergonomics problems trend of student at B5101 classroom building 2, Suranaree University of Technology. The objective to survey ergonomics problems and effect from use chairs for sitting in class room. The result from survey method 100 student they use lecture chair for sitting in classroom more than 2 hours/ day by RULA[1]. and Body discomfort survey[2]. The result from Body discomfort survey contribute fatigue problems at neck, lower back, upper back and right shoulder 2.93, 2.91, 2.33, 1.75 respectively and result from RULA contribute fatigue problems at neck, body and right upper arm 4.00, 3.75 and 3.00 respectively are consistent. After that the researcher provide improvement plan for design new chair support student fatigue reduction by prepare data of sample anthropometry and design ergonomics chair prototype 3 unit. Then sample 100 student trial to use new chair and evaluate again by RULA, Body discomfort and satisfaction. The result from trial new chair after improvement by RULA present fatigue reduction average of head and neck from 4.00 to 2.25 , body and trunk from 3.75 to 2.00 and arm force from 1.00 to 0.25 respectively. The result from trial new chair after improvement by Body discomfort present fatigue reduction average of lower back from 2.91 to 0.87, neck from 2.93 to 1.24, upper back 2.33 to 0.84 and right upper arm from 1.75 to 0.74. That statistical of RULA and Body discomfort survey present fatigue reduction after improvement significance with a confidence level of 95% (p-value 0.05). When analyzing the relationship of fatigue as part of the body by Chi – square test during RULA and Body discomfort that before and after improvements were consistent with the significant level of confidence 95% (p-value 0.05) . Moreover the students satisfaction result from trial with a new chair for 30 minutes [3]. 72 percent very satisfied of the folding of the secondary writing simple 66% the width of the writing plate, 64% the suitability of the writing plate, 62% of soft seat cushion and 61% easy to seat the chair.

Keywords: Ergonomics, Work station design, ErgonomicsChair, Student, Fatigue

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3490
34 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
33 Malpractice, Even in Conditions of Compliance with the Rules of Dental Ethics

Authors: Saimir Heta, Kers Kapa, Rialda Xhizdari, Ilma Robo

Abstract:

Despite the existence of different dental specialties, the dentist-patient relationship is unique, in the very fact that the treatment is performed by one doctor and the patient identifies the malpractice presented as part of that doctor's practice; this is in complete contrast to cases of medical treatments where the patient can be presented to a team of doctors, to treat a specific pathology. The rules of dental ethics are almost the same as the rules of medical ethics. The appearance of dental malpractice affects exactly this two-party relationship, created on the basis of professionalism, without deviations in this direction, between the dentist and the patient, but with very narrow individual boundaries, compared to cases of medical malpractice. Malpractice can have different reasons for its appearance, starting from professional negligence, but also from the lack of professional knowledge of the dentist who undertakes the dental treatment. It should always be seen in perspective that we are not talking about the individual - the dentist who goes to work with the intention of harming their patients. Malpractice can also be a consequence of the impossibility, for anatomical or physiological reasons of the tooth under dental treatment, to realize the predetermined dental treatment plan. On the other hand, the dentist himself is an individual who can be affected by health conditions, or have vices that affect the systemic health of the dentist as an individual, which in these conditions can cause malpractice. So, depending on the reason that led to the appearance of malpractice, the method of treatment from a legal point of view also varies, for the dentist who committed the malpractice, evaluating the latter if the malpractice came under the conditions of applying the rules of dental ethics. The deviation from the predetermined dental plan is the minimum sign of malpractice and the latter should not be definitively related only to cases of difficult dental treatments. The identification of the reason for the appearance of malpractice is the initial element, which makes the difference in the way of its treatment, from a legal point of view, and the involvement of the dentist in the assessment of the malpractice committed, must be based on the legislation in force, which must be said to have their specific changes in different states. Malpractice should be referred to, or included in the lectures or in the continuing education of professionals, because it serves as a method of obtaining professional experience in order not to repeat the same thing several times, by different professionals.

Keywords: Dental ethics, malpractice, negligence, legal basis, continuing education, dental treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
32 Towards a Deconstructive Text: Beyond Language and the Politics of Absences in Samuel Beckett’s Waiting for Godot

Authors: Afia Shahid

Abstract:

The writing of Samuel Beckett is associated with meaning in the meaninglessness and the production of what he calls ‘literature of unword’. The casual escape from the world of words in the form of silences and pauses, in his play Waiting for Godot, urges to ask question of their existence and ultimately leads to investigate the theory behind their use in the play. This paper proposes that these absences (silence and pause) in Beckett’s play force to think ‘beyond’ language. This paper asks how silence and pause in Beckett’s text speak for the emergence of poststructuralist text. It aims to identify the significant features of the philosophy of deconstruction in the play of Beckett to demystify the hostile complicity between literature and philosophy. With the interpretive paradigm of poststructuralism this research focuses on the text as a research data. It attempts to delineate the relationship between poststructuralist theoretical concerns and text of Beckett. Keeping in view the theoretical concerns of Poststructuralist theorist Jacques Derrida, the main concern of the discussion is directed towards the notion of ‘beyond’ language into the absences that are aimed at silencing the existing discourse with the ‘radical irony’ of this anti-formal art that contains its own denial and thus represents the idea of ceaseless questioning and radical contradiction in art and any text. This article asks how text of Beckett vibrates with loud silence and has disrupted language to demonstrate the emptiness of words and thus exploring the limitless void of absences. Beckett’s text resonates with silence and pause that is neither negation nor affirmation rather a poststructuralist’s suspension of reality that is ever changing with the undecidablity of all meanings. Within the theoretical notion of Derrida’s Différance this study interprets silence and pause in Beckett’s art. The silence and pause behave like Derrida’s Différance and have questioned their own existence in the text to deconstruct any definiteness and finality of reality to extend an undecidable threshold of poststructuralists that aims to evade the ‘labyrinth of language’.

Keywords: Différance, language, pause, poststructuralism, silence, text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
31 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: Films, magnetron co-sputtering, photocatalysis, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
30 Structural Analysis of Aircraft Wing Using Finite Element Analysis

Authors: Manish Kumar, Pradeep Rout Aditya Kumar Jha, Pankaj Gupta

Abstract:

Wings are structural components of an aeroplane that are used to produce lift while the aircraft is in flight. The initial assault angle of the wing is definite. Due to the pressure difference at the top and bottom surfaces of the wing, lift force is produced when the flow passes over it. This paper explains the fundamental concept of the structural behaviour of a wing threatened by flowing loads during the voyage. The study comprises the use of concepts and analysis with the help of finite element analysis. Wing assembly is the first stage of wing model and design, which are determined by fascinating factual features. The basic gathering wing consists of a thin membrane, two poles, and several ribs. It has two spars, the major spar and the secondary spar. Here, NACA 23015 is selected as the standard model for all types of aerofoil structures since it is more akin to the custom aerofoil utilized in large aircraft, specifically the Airbus A320. Two rods mostly endure the twisting moment and trim strength, which is finished with titanium contamination to ensure enough inflexibility. The covering and wing spars are made of aluminium amalgam to lessen the structural heaviness. Following that, a static underlying examination is performed, and the general contortion, equivalent flexible strain, and comparing Von-Mises pressure are obtained to aid in investigations of the mechanical behaviour of the wing. Moreover, the modular examination is being upheld to decide the normal pace of repetition as well as the modular state of the three orders, which are obtained through the pre-stress modular investigation. The findings of the modular investigation assist engineers in reducing their excitement about regular events and turning away the wing from the whirlwind. Based on the findings of the study, planners can prioritise union and examination of the pressure mindfulness range and tremendous twisting region. All in all, the entertainment outcomes demonstrate that the game plan is feasible and further develop the data grade of the lifting surface.

Keywords: FEM, Airbus, NACA, modulus of elasticity, aircraft wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528
29 Interruption Overload in an Office Environment: Hungarian Survey Focusing on the Factors that Affect Job Satisfaction and Work Efficiency

Authors: Fruzsina Pataki-Bittó, Edit Németh

Abstract:

On the one hand, new technologies and communication tools improve employee productivity and accelerate information and knowledge transfer, while on the other hand, information overload and continuous interruptions make it even harder to concentrate at work. It is a great challenge for companies to find the right balance, while there is also an ongoing demand to recruit and retain the talented employees who are able to adopt the modern work style and effectively use modern communication tools. For this reason, this research does not focus on the objective measures of office interruptions, but aims to find those disruption factors which influence the comfort and job satisfaction of employees, and the way how they feel generally at work. The focus of this research is on how employees feel about the different types of interruptions, which are those they themselves identify as hindering factors, and those they feel as stress factors. By identifying and then reducing these destructive factors, job satisfaction can reach a higher level and employee turnover can be reduced. During the research, we collected information from depth interviews and questionnaires asking about work environment, communication channels used in the workplace, individual communication preferences, factors considered as disruptions, and individual steps taken to avoid interruptions. The questionnaire was completed by 141 office workers from several types of workplaces based in Hungary. Even though 66 respondents are working at Hungarian offices of multinational companies, the research is about the characteristics of the Hungarian labor force. The most important result of the research shows that while more than one third of the respondents consider office noise as a disturbing factor, personal inquiries are welcome and considered useful, even if in such cases the work environment will not be convenient to solve tasks requiring concentration. Analyzing the sizes of the offices, in an open-space environment, the rate of those who consider office noise as a disturbing factor is surprisingly lower than in smaller office rooms. Opinions are more diverse regarding information communication technologies. In addition to the interruption factors affecting the employees' job satisfaction, the research also focuses on the role of the offices in the 21st century.

Keywords: Information overload, interruption, job satisfaction, office environment, work efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
28 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
27 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: Polymer treatment, laser, periodic pattern, cell response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
26 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
25 Teachers Leadership Dimension in History Learning

Authors: Lee Bih Ni, Zulfhikar Rabe, Nurul Asyikin Hassan

Abstract:

The Ministry of Education Malaysia dynamically and drastically made the subject of History mandatory to be in force in 2013. This is in recognition of the nation's heritage and treasures in maintaining true facts and information for future generations of the State. History reveals the civilization of a nation and the fact of national cultural heritage. Civilization needs to be preserved as a legacy of sovereign heritage. Today's generation is the catalyst for future heirs who will support the principle and direction of the country. In line with the National Education Philosophy that aims to shape the potential development of individuals holistically and uniquely in order to produce a balanced and harmonious student in terms of intellectual, spiritual, emotional and physical. Hence, understanding the importance of studying the history subject as a pillar of identity and the history of nationhood is to be a priority in the pursuit of knowledge and empowering the spirit of statehood that is nurtured through continuous learning at school. Judging from the aspect of teacher leadership role in integrating history in a combined way based on Teacher Education Philosophy. It empowers the teaching profession towards the teacher to support noble character. It also supports progressive and scientific views. Teachers are willing to uphold the State's aspirations and celebrate the country's cultural heritage. They guarantee individual development and maintain a united, democratic, progressive and disciplined society. Teacher's role as a change and leadership agent in education begins in the classroom through formal or informal educational processes. This situation is expanded in schools, communities and countries. The focus of this paper is on the role of teacher leadership influencing the effectiveness of teaching and learning history in the classroom environment. Leadership guides to teachers' perceptions on the role of teacher leadership, teaching leadership, and the teacher leadership role and effective teacher leadership role. Discussions give emphasis on aspects of factors affecting the classroom environment, forming the classroom agenda, effective classroom implementation methods, suitable climate for historical learning and teacher challenges in implicating the effectiveness of teaching and learning processes.

Keywords: Teacher leadership, leadership lessons, effective classroom, effective teacher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
24 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.

Keywords: Base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
23 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth

Authors: T. B. Karu Jayasundara

Abstract:

The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.

Keywords: Dust particles, high and low tides, heavy minerals. low gravity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
22 A Look at the Gezi Park Protests through the Lens of Media

Authors: Süleyman Hakan Yılmaz, Yasemin Gülşen Yılmaz

Abstract:

The Gezi Park protests of 2013 have significantly changed the Turkish agenda and its effects have been felt historically. The protests, which rapidly spread throughout the country, were triggered by the proposal to recreate the Ottoman Army Barracks to function as a shopping mall on Gezi Park located in Istanbul’s Taksim neighbourhood despite the oppositions of several NGOs and when trees were cut in the park for this purpose. Once the news that the construction vehicles entered the park on May 27 spread on social media, activists moved into the park to stop the demolition, against whom the police used disproportioned force. With this police intervention and the then prime-minister Tayyip Erdoğan's insistent statements about the construction plans, the protests turned into anti- government demonstrations, which then spread to the rest of the country, mainly in big cities like Ankara and Izmir. According to the Ministry of Internal Affairs’ June 23rd reports, 2.5 million people joined the demonstrations in 79 provinces, that is all of them, except for the provinces of Bayburt and Bingöl, while even more people shared their opinions via social networks. As a result of these events, 8 civilians and 2 security personnel lost their lives, namely police chief Mustafa Sarı, police officer Ahmet Küçükdağ, citizens Mehmet Ayvalıtaş, Abdullah Cömert, Ethem Sarısülük, Ali İsmail Korkmaz, Ahmet Atakan, Berkin Elvan, Burak Can Karamanoğlu, Mehmet İstif, and Elif Çermik, and 8163 more were injured. Besides being a turning point in Turkish history, the Gezi Park protests also had broad repercussions in both in Turkish and in global media, which focused on Turkey throughout the events. Our study conducts content analysis of three Turkish reporting newspapers with varying ideological standpoints, Hürriyet, Cumhuriyet ve Yeni Şafak, in order to reveal their basic approach to news casting in context of the Gezi Park protests. Headlines, news segments, and news content relating to the Gezi protests were treated and analysed for this purpose. The aim of this study is to understand the social effects of the Gezi Park protests through media samples with varying political attitudes towards news casting.

Keywords: Gezi Park, media, news casting, tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
21 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building

Authors: A. Schuchter, M. Promegger

Abstract:

The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.

Keywords: Flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
20 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: Amplitude-independent damping, Homogeneous friction, Pendulum nonlinear dynamics, Structural control, Vibration resonant absorbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
19 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: Expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
18 Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures

Authors: Sunaitan Al Mutairi

Abstract:

A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle.

Keywords: Construction activities delays, delay analysis for construction projects, mobilization delays, oil and gas projects delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
17 The Urban Development Boundary as a Planning Tool for Sustainable Urban Form: The South African Situation

Authors: E. J. Cilliers

Abstract:

It is the living conditions in the cities that determine the future of our livelihood. “To change life, we must first change space"- Henri Lefebvre. Sustainable development is a utopian aspiration for South African cities (especially the case study of the Gauteng City Region), which are currently characterized by unplanned growth and increasing urban sprawl. While the reasons for poor environmental quality and living conditions are undoubtedly diverse and complex, having political, economical and social dimensions, it is argued that the prevailing approach to layout planning in South Africa is part of the problem. This article seeks a solution to the problem of sustainability, from a spatial planning perspective. The spatial planning tool, the urban development boundary, is introduced as the concept that will ensure empty talk being translated into a sustainable vision. The urban development boundary is a spatial planning tool that can be used and implemented to direct urban growth towards a more sustainable form. The urban development boundary aims to ensure planned urban areas, in contrast to the current unplanned areas characterized by urban sprawl and insufficient infrastructure. However, the success of the urban development boundary concept is subject to effective implementation measures, as well as adequate and efficient management. The concept of sustainable development can function as a driving force underlying societal change and transformation, but the interface between spatial planning and environmental management needs to be established (as this is the core aspects underlying sustainable development), and authorities needs to understand and implement this interface consecutively. This interface can, however, realize in terms of the objectives of the planning tool – the urban development boundary. The case study, the Gauteng City Region, is depicted as a site of economic growth and innovation, but there is a lack of good urban and regional governance, impacting on the design (layout) and function of urban areas and land use, as current authorities make uninformed decisions in terms of development applications, leading to unsustainable urban forms and unsustainable nodes. Place and space concepts are thus critical matters applicable to planning of the Gauteng City Region. The urban development boundary are thus explored as a planning tool to guide decision-making, and create a sustainable urban form, leading to better environmental and living conditions, and continuous sustainability.

Keywords: Urban planning, sustainable urban form, urbandevelopment boundary, planning tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
16 New Suspension Mechanism Using Camber Thrust for a Formula Car

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswinds and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since the fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced, thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle, especially with the worrying increase of vehicle collision every day. With better safety performance of a vehicle, every driver will be more confident driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved, thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in a four-wheel vehicle, especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on the performance of both suspension systems.

Keywords: Automobile, Camber Thrust, Cornering force, Suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591
15 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and nontoxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75 and 0:100) and fiber content (i.e. in the range of 1-25 %wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: Polylactic acid, Thermoplastic starch, Jute fiber, Composite, Blend.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
14 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: Electric power consumption, LED color, LED lighting, plant factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
13 Convention Refugees in New Zealand: Being Trapped in Immigration Limbo Without the Right to Obtain a Visa

Authors: Saska Alexandria Hayes

Abstract:

Multiple Convention Refugees in New Zealand are stuck in a state of immigration limbo due to a lack of defined immigration policies. The Refugee Convention of 1951 does not give the right to be issued a permanent right to live and work in the country of asylum. A gap in New Zealand's immigration law and policy has left Convention Refugees without the right to obtain a resident or temporary entry visa. The significant lack of literature on this topic suggests that the lack of visa options for Convention Refugees in New Zealand is a widely unknown or unacknowledged issue. Refugees in New Zealand enjoy the right of non-refoulement contained in Article 33 of the Refugee Convention 1951, whether lawful or unlawful. However, a number of rights contained in the Refugee Convention 1951, such as the right to gainful employment and social security, are limited to refugees who maintain lawful immigration status. If a Convention Refugee is denied a resident visa, the only temporary entry visa a Convention Refugee can apply for in New Zealand is discretionary. The appeal cases heard at the Immigration Protection Tribunal establish that Immigration New Zealand has declined resident and discretionary temporary entry visa applications by Convention Refugees for failing to meet the health or character immigration instructions. The inability of a Convention Refugee to gain residency in New Zealand creates a dependence on the issue of discretionary temporary entry visas to maintain lawful status. The appeal cases record that this reliance has led to Convention Refugees' lawful immigration status being in question, temporarily depriving them of the rights contained in the Refugee Convention 1951 of lawful refugees. In one case, the process of applying for a discretionary temporary entry visa led to a lawful Convention Refugee being temporarily deprived of the right to social security, breaching Article 24 of the Refugee Convention 1951. The judiciary has stated a constant reliance on the issue of discretionary temporary entry visas for Convention Refugees can lead to a breach of New Zealand's international obligations under Article 7 of the International Covenant on Civil and Political Rights. The appeal cases suggest that, despite successful judicial proceedings, at least three persons have been made to rely on the issue of discretionary temporary entry visas potentially indefinitely. The appeal cases establish that a Convention Refugee can be denied a discretionary temporary entry visa and become unlawful. Unlawful status could ultimately breach New Zealand's obligations under Article 33 of the Refugee Convention 1951 as it would procedurally deny Convention Refugees asylum. It would force them to choose between the right of non-refoulement or leaving New Zealand to seek the ability to access all the human rights contained in the Universal Declaration of Human Rights elsewhere. This paper discusses how the current system has given rise to these breaches and emphasizes a need to create a designated temporary entry visa category for Convention Refugees.

Keywords: Domestic policy, immigration, migration, New Zealand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98
12 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topologically order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for exchange photon energy with molecules without changes in topology (i.e., chemical transformation into products do not propagate any changes or variation in the network topology of physical configuration). The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure, and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies, which are automated, real-time, reliable, reproducible and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody–antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, engineering topology, photonic system molecular structure, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 458
11 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers

Authors: Sumanta Daw, Gopal Chandra Saha

Abstract:

The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.

Keywords: Cardio-respiratory efficiency, spirometry, water polo players, sprinters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
10 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: Altitude sickness, cabin pressure, hypobaric chamber training, symptoms and altitude, slow onset hypoxia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406