Search results for: sensor network
1692 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.
Keywords: Concrete design code, anticipate method, artificial neural network, multi-variable regression, adaptive neuro fuzzy inference system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8161691 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10741690 Application of GAMS and GA in the Location and Penetration of Distributed Generation
Authors: Alireza Dehghani Pilehvarani, Mojtaba Hakimzadeh, Mohammad Jafari Far, Reza Sedaghati
Abstract:
Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).
Keywords: Distributed Generation, Location, Loss Reduction, Distribution Network, GA, GAMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26331689 Neural Network Based Approach for Face Detection cum Face Recognition
Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh
Abstract:
Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23001688 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.
Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901687 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks
Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle
Abstract:
Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.
Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261686 The Impact of NICTBB in Facilitating the E-Services and M-Services in Tanzania
Authors: S. Pazi, C. Chatwin
Abstract:
ICT services are a key element of communications and important for socio-economic development. In recognition of the importance of this, the Tanzanian Government started to implement a National ICT Broadband Infrastructure Fibre Optic Backbone (NICTBB) in 2009; this development was planned to be implemented in four phases using an optical dense wavelength division multiplexing (DWDM) network technology in collaboration with the Chinese Government through the Chinese International Telecommunications Construction Corporation (CITCC) under a bilateral agreement. This paper briefly explores the NICTBB network technologies implementation, operations and Internet bandwidth costs. It also provides an in depth assessment of the delivery of ICT services such as e-services and m-services in both urban and rural areas following commissioning of the NICTBB system. Following quantitative and qualitative approaches, the study shows that there have been significant improvements in utilization efficiency, effectiveness and the reliability of the ICT service such as e-services and m-services the NICTCBB was commissioned.
Keywords: NICTBB, DWDM, Optic Fibre, Internet, ICT services, e-services, m-services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32201685 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study
Authors: Chee Peng Lim, Wei Yee Goh
Abstract:
In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.
Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16891684 SMCC: Self-Managing Congestion Control Algorithm
Authors: Sh. Jamali, A. Eftekhari
Abstract:
Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.Keywords: Self-managing, Congestion control, TCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651683 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth
.Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001682 Application of Spreadsheet and Queuing Network Model to Capacity Optimization in Product Development
Authors: Muhammad Marsudi, Dzuraidah Abdul Wahab, Che Hassan Che Haron
Abstract:
Modeling of a manufacturing system enables one to identify the effects of key design parameters on the system performance and as a result to make correct decision. This paper proposes a manufacturing system modeling approach using a spreadsheet model based on queuing network theory, in which a static capacity planning model and stochastic queuing model are integrated. The model was used to improve the existing system utilization in relation to product design. The model incorporates few parameters such as utilization, cycle time, throughput, and batch size. The study also showed that the validity of developed model is good enough to apply and the maximum value of relative error is 10%, far below the limit value 32%. Therefore, the model developed in this study is a valuable alternative model in evaluating a manufacturing systemKeywords: Manufacturing system, product design, spreadsheet model, utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191681 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning
Authors: Sumitra Nuanmeesri
Abstract:
The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.
Keywords: Blended Learning, New Media, Infrastructure and Computer Network, Tele-Education, Online Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20241680 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: Brain-computer interface, speech recognition, electroencephalography EEG, Wernicke area, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9171679 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27741678 Experimental Evaluation of Mobility Anchor Point Selection Scheme in Hierarchical Mobile IPv6
Authors: Zulkeflee Kusin, Mohamad Shanudin Zakaria
Abstract:
Hierarchical Mobile IPv6 (HMIPv6) was designed to support IP micro-mobility management in the Next Generation Networks (NGN) framework. The main design behind this protocol is the usage of Mobility Anchor Point (MAP) located at any level router of network to support hierarchical mobility management. However, the distance MAP selection in HMIPv6 causes MAP overloaded and increase frequent binding update as the network grows. Therefore, to address the issue in designing MAP selection scheme, we propose a dynamic load control mechanism integrates with a speed detection mechanism (DMS-DLC). From the experimental results we obtain that the proposed scheme gives better distribution in MAP load and increase handover speed.Keywords: Dynamic load control, HMIPv6, Mobility AnchorPoint, MAP selection scheme
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001677 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.
Keywords: (n, k)-star Topology, Fault Tolerance, Conditional Diagnosability, Multi-Agent System, Automated Power System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24481676 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13011675 A Survey on Voice over IP over Wireless LANs
Authors: Haniyeh Kazemitabar, Sameha Ahmed, Kashif Nisar, Abas B Said, Halabi B Hasbullah
Abstract:
Voice over Internet Protocol (VoIP) is a form of voice communication that uses audio data to transmit voice signals to the end user. VoIP is one of the most important technologies in the World of communication. Around, 20 years of research on VoIP, some problems of VoIP are still remaining. During the past decade and with growing of wireless technologies, we have seen that many papers turn their concentration from Wired-LAN to Wireless-LAN. VoIP over Wireless LAN (WLAN) faces many challenges due to the loose nature of wireless network. Issues like providing Quality of Service (QoS) at a good level, dedicating capacity for calls and having secure calls is more difficult rather than wired LAN. Therefore VoIP over WLAN (VoWLAN) remains a challenging research topic. In this paper we consolidate and address major VoWLAN issues. This research is helpful for those researchers wants to do research in Voice over IP technology over WLAN network.Keywords: Capacity, QoS, Security, VoIP Issues, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441674 Modeling of Reusability of Object Oriented Software System
Authors: Parvinder S. Sandhu, Harpreet Kaur, Amanpreet Singh
Abstract:
Automatic reusability appraisal is helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this research work, structural attributes of software components are explored using software metrics and quality of the software is inferred by different Neural Network based approaches, taking the metric values as input. The calculated reusability value enables to identify a good quality code automatically. It is found that the reusability value determined is close to the manual analysis used to be performed by the programmers or repository managers. So, the developed system can be used to enhance the productivity and quality of software development.Keywords: Neural Network, Software Reusability, Software Metric, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801673 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: Distribution network, machine learning, network topology, phase identification, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10731672 Secure Internet Connectivity for Dynamic Source Routing (DSR) based Mobile Ad hoc Networks
Authors: Ramanarayana Kandikattu, Lillykutty Jacob
Abstract:
'Secure routing in Mobile Ad hoc networks' and 'Internet connectivity to Mobile Ad hoc networks' have been dealt separately in the past research. This paper proposes a light weight solution for secure routing in integrated Mobile Ad hoc Network (MANET)-Internet. The proposed framework ensures mutual authentication of Mobile Node (MN), Foreign Agent (FA) and Home Agent (HA) to avoid various attacks on global connectivity and employs light weight hop-by-hop authentication and end-to-end integrity to protect the network from most of the potential security attacks. The framework also uses dynamic security monitoring mechanism to monitor the misbehavior of internal nodes. Security and performance analysis show that our proposed framework achieves good security while keeping the overhead and latency minimal.Keywords: Internet, Mobile Ad hoc Networks, Secure routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14271671 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network
Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad
Abstract:
This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13991670 Gas Sensing Properties of SnO2 Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method
Authors: G. Korotcenkov, B. K. Cho, L. B. Gulina, V. P. Tolstoy
Abstract:
The effect of SnO2 surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO2-based gas sensors to CO and H2. At the same time, the presence of the Ag clusters on the surface of SnO2 depressed the sensor response to ozone.
Keywords: Ag nanoparticles, deposition, characterization, gas sensors, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23881669 Concrete Mix Design Using Neural Network
Authors: Rama Shanker, Anil Kumar Sachan
Abstract:
Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.
Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26371668 Study on the Evaluation of the Chaotic Cipher System Using the Improved Volterra Filters and the RBFN Mapping
Authors: Hirotaka Watanabe, Takaaki Kondo, Daiki Yoshida, Ariyoshi Nakayama, Taichi Sato, Shuhei Kuriyama, Hiroyuki Kamata
Abstract:
In this paper, we propose a chaotic cipher system consisting of Improved Volterra Filters and the mapping that is created from the actual voice by using Radial Basis Function Network. In order to achieve a practical system, the system supposes to use the digital communication line, such as the Internet, to maintain the parameter matching between the transmitter and receiver sides. Therefore, in order to withstand the attack from outside, it is necessary that complicate the internal state and improve the sensitivity coefficient. In this paper, we validate the robustness of proposed method from three perspectives of "Chaotic properties", "Randomness", "Coefficient sensitivity".
Keywords: Chaos cipher, 16-bit-length fixed point arithmetic, Volterra filter, Seacret communications, RBF Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201667 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15141666 Using Historical Data for Stock Prediction of a Tech Company
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.
Keywords: Finance, machine learning, opening price, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6531665 Modelling of Energy Consumption in Wheat Production Using Neural Networks “Case Study in Canterbury Province, New Zealand“
Authors: M. Safa, S. Samarasinghe
Abstract:
An artificial neural network (ANN) approach was used to model the energy consumption of wheat production. This study was conducted over 35,300 hectares of irrigated and dry land wheat fields in Canterbury in the 2007-2008 harvest year.1 In this study several direct and indirect factors have been used to create an artificial neural networks model to predict energy use in wheat production. The final model can predict energy consumption by using farm condition (size of wheat area and number paddocks), farmers- social properties (education), and energy inputs (N and P use, fungicide consumption, seed consumption, and irrigation frequency), it can also predict energy use in Canterbury wheat farms with error margin of ±7% (± 1600 MJ/ha).
Keywords: Artificial neural network, Canterbury, energy consumption, modelling, New Zealand, wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14151664 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011663 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm
Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura
Abstract:
In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.
Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786